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Abstract. In this paper, we introduce a logic to reason about group actions for
groups that are defined by means of the majority rule. It is well known that majori-
tarian aggregation is subject to irrationality, as the results in social choice theory
and judgment aggregation show. The logic of action that we use here for mod-
elling group actions is based on a substructural propositional logic that allows for
preventing inconsistent outcome. Agency is modeled by means of a “bringing-
it-about” modal logic with coalitions. We show that, in this way, it is possible to
obtain a consistent model of agency of groups that are defined in an aggregative
manner.

1 Introduction

The rationality of group attitudes, such as beliefs, desires, intentions, and agency is a
central issue in the foundation of multiagent system. The concept of group attitudes has
been interpreted in different ways by a number of approaches. For instance, Christian
List [10] distinguishes between three kinds of collective attitudes: aggregate, common,
and corporate group attitudes. We are here interested in the first two kinds. Common
attitudes are ascribed to a group by requiring that every member of the group share
the same attitude. Common attitudes have been presupposed by the approach to group
actions based on collective intentionality and joint action [26, 10, 12]. In this view,
possible disagreements among the members of the group are excluded. By contrast, an
aggregative view of group attitudes does not presuppose that the individuals that are
members of the group all share the same attitude. A group attitude can be ascribed to
the group by solving the disagreement by means of an aggregation procedure such as
the majority rule. This view is appealing, since it seems to be capable of accounting
for the common attitudes perspective, that implies unanimity, but also for a number
of situations in which it is reasonable to define a group attitude without assuming that
all the members of the group share a common attitudes. For instance, in case we model
parliaments, organizations, committees. Besides being descriptively adequate to a num-
ber of modelling scenarios, non-unanimous group attitudes are important also from the
point of view of multiagent systems and knowledge representation of group informa-
tion. Consider the following situations involving artificial agents. Suppose three sensors
have been placed in different locations of a room and they are designed to trigger a fire
alarm in case they detect smoke. By viewing the three sensors as a group, we may in-
vestigate what are the conditions that defines the group action, in this case, “trigger the
alarm”. By forcing unanimity, that is, by viewing group attitudes as common attitudes,
we are assuming that the three sensors as a group trigger the alarm only in the case
they all agree in detecting smoke. However, a unanimous view of group actions may



lead to lose a lot of relevant information: if the sensors disagree, the alarm is simply
not triggered, even if the disagreement may be caused, for instance, by the fact that one
of the three sensors is in a location that has not been reached by the smoke yet. Una-
nimity appears to be a too restrictive requirement in this case [20]. An aggregative view
provides the formal means to tailor the concept of group information to the specific
scenario, by selecting the appropriate aggregation procedure. Although an aggregative
view of group attitudes is desirable for many reasons, several results in social choice
theory and judgment aggregation show that many important aggregation procedures are
not capable of guaranteeing a rational outcome. One crucial example is the majority
rule [11]. As usual in the BDI approach to agency, at least a modicum of rationality has
to be presupposed in order to define an agent. An agent cannot hold (synchronically)
inconsistent attitudes, such as plans, commitments or beliefs. When the outcome of an
aggregation procedure is inconsistent, as in the case of the majority rule, we simply
cannot define a majoritarian group as an agent. The solution that has been developed
in the literature on judgment aggregation is to give up procedures such as the majority
rule and investigate aggregation procedures that guarantee consistency [13].

In this paper, we are interested in pursuing a different strategy. We want to be able
to ascribe collective attitudes to groups even in the case individual attitudes are aggre-
gated by means of the majority rule. The motivation is that many real scenarios actually
use the majority rule to settle disagreement. Besides, the majority rule has a number
of desirable features such as it is simple to understand and implement, preference ag-
gregation is strategy-proof (when consistent) [3], it has been associated to an epistemic
interpretation justified by the Condorcet’s jury theorem.

In order to avoid the inconsistency, as well as the irrationality caused by the ma-
jority rule, we shall weaken the logic that we use to model group rationality in order
to ensure general consistency. For instance, we know that the majority rule may return
inconsistent sets of judgments. On a closer inspection, the inconsistency is deeply inter-
twined with the principles of classical logic. In [19], a possibility result for the majority
rule has been provided by means of linear logic [7, 8]. We will build on that in order
to develop a logic for majoritarian groups attitudes, that is, groups whose attitudes are
aggregatively defined by means of the majority rule. In principle, our treatment can be
instantiated to a number of propositional attitudes such as beliefs, desires, intentions.
We focus here on action and agency and we model the situation in which a number of
agents submit proposals for action that have to be aggregated in a group action.

In order to model action and agency, we shall use a “bringing-it-about” modality
whose properties have been investigated for instance by [5, 9]. A logic of agency based
on intuitionistic linear logic has been presented in [21]. Moreover, a insightful discus-
sion of bringing-it-about modalities for representing coalitional ability has been done in
[25]. A closely related work is [2]. There, the authors use judgment aggregation in or-
der to model group attitudes by relying on logics of agency. The significant difference
with respect to the present paper is that their treatment applies to aggregation proce-
dures that are known to guarantee consistency, e.g. the premise based procedure [13],
whereas here we are interested in approaching the majority rule.

Modelling group actions in case of an aggregative view is simpler than modelling
common group actions in a number of aspects. Firstly, we do not need to assume joint



intentionality nor a shared goal. By definition of majoritarian group, we are already
assuming that individuals do have different goals [10]. For that reason, we are labelling
the actions of the group by group actions and not by joint action. Moreover, it means
that intentionality and goals do not need to enter the model for defining what a group
action is [12]. That is, the “bringing-it-about” modality is sufficient for this preliminary
task.

The remainder of this paper is organized as follows. In the next section, after pre-
senting the basic notions of judgment aggregation, we shall introduce the problem of
majoritarian group actions in an informal way by discussing a discursive dilemma [11].
In Section 3, we see the basics of the propositional substructural logic that we are going
to use to build our model of group actions. In Section 4, we enrich the propositional
substructural logic by means of the modalities for agency. Besides a number of tech-
nicalities, the difference with [21] is that we are going to introduce coalitions in the
spirit of [25]. Moreover, we are going to establish soundness and completeness of the
Hilbert system for our logic. In Section 5, we approach our modelling of group actions
and we show how to provide a consistent modellisation of majoritarian aggregation. In
particular, we show how to view discursive dilemmas as examples of the complex na-
ture of group actions, rather than a case of mere logical inconsistency. Finally, Section
6 concludes.

2 Background on Judgment Aggregation

We present now the basic definitions of the judgement aggregation (JA) setting [13, 6],
which provides the formal counterpart of an aggregative view of collective attitudes
[10]. We slightly rephrase the definitions for the present application. Let N be a (finite)
set of agents. An agendaXL is a (finite) set of propositions in the languageLL of a given
logic L that is closed under complements. i.e. non-double negations. We let the logic
L unspecified here, as we shall see two logics for defining judgment sets. Moreover,
we shall assume that the agenda does not contain tautologies or contradictions, this is
motivated in a number of papers in JA [13] but it is also motivated here by the fact that
we are assuming that it is not meaningful to talk about tautological actions (cf. Section
4.2).

The standard definitions of the JA framework are the following. A judgement set J
is a subset of XL such that J is (wrt L) consistent (J 0L ⊥), complete (for all ϕ ∈ XL,
ϕ ∈ J or ¬ϕ ∈ J) and deductive closed (if J `L ϕ and ϕ ∈ XL, ϕ ∈ J). The
definitions are presented in syntactic terms, by referring to a calculus `L. The notion of
consistency has been rephrased to cope with the logic that we are going to introduce.
Note that our definition are equivalent to their usual model-theoretic counterparts.

Denote by J(XL) the set of all judgement sets on XL. A profile of judgements
sets J is a vector (J1, . . . , Jn), where n = |N |. An aggregator is then a function F :
J(XL)n → P(XL). The codomain of F is the powerset P(XL), therefore admitting
possibly inconsistent sets. Let Nϕ = {i | ϕ ∈ Ji}, the majority rule is defined as
follows: m : J(XL)n → P(XL) such that m(J) = {ϕ ∈ XL | |Nϕ| > n/2}.

In JA, the collective set F (J) is also assumed to be consistent, complete, and de-
ductively closed wrt. L. This defines the notion of collective rationality. The classical



results in JA show that the majority rule is not collectively rational. That means that
there exists an agenda and a profile of judgment sets such that F (J) is not consistent.
We present now a significant example.

We are endorsing an aggregative view of group attitudes, that means that the atti-
tudes that one can ascribe the group are obtained as outcomes of an aggregation pro-
cedure [10]. Consider the following case of discursive dilemma [11] on the agenda of
propositions {A,B,A ∧B,¬A,¬B,¬(A ∧B)}.

A A ∧B B ¬A ¬(A ∧B) ¬B
1 yes yes yes no no no
2 no no yes yes yes no
3 yes no no no yes yes

maj. yes no yes no yes no

By majority, the group accepts A, because of 1 and 3, it accepts B, because of 1
and 2, and it also has to accept ¬(A ∧ B). Therefore, one can see that the group is
inconsistent since, for instance, A and B entails A ∧ B which contradicts ¬(A ∧ B),
i.e. A ∧B, ¬(A ∧B) ` ⊥.

We are interested in representing majoritarian group reasoning and the outcomes
of an election by means of the bringing-it-about modality E. For instance, suppose the
group G is assumed to be the agent who is bringing about the propositions accepted by
majority. To express that, we write formulas such asEGA,EGB, and EG¬(A∧B). By
means, of the usual principles of the modality E — for instance the axiom T : EGϕ→ ϕ
— we can infer again the inconsistency between A ∧B and ¬(A ∧B).

We will see that a fundamental point in order to save collective rationality in case of
majoritarian decisions is to keep track of the coalitions that are responsible for support-
ing the collectively accepted propositions [19]. In order to do that, we want to reason
about formulas that indicates that the coalition{1, 3} brings about A, coalition {1,2}
brings about B, and coalition {2, 3} does not brings about (A ∧ B). We write such
statements as follows: E{1,3}A,E{1,2}B, E{2,3}¬(A ∧ B). We will see that the incon-
sistency in discursive dilemmas is caused by mixing propositions that hold because
they are supported by a single coalition, e.g. E{1,3}A, and propositions that hold be-
cause they follow from propositions that are supported by two distinct coalitions: for
instance, E{1,2,3}(A ∧B) that follows from E{1,3}A and E{1,2}B.

In the next section, we will introduce a logic that is capable of distinguishing two
modes of combinations of propositions supported by coalitions, preventing the majori-
tarian outcomes from inconsistency.

3 Background on Substructural Logics

We briefly introduce the basics of Linear Logic (LL). LL captures a resource-sensitive
reasoning that means that, for instance, wrt linear logic implication (, modus ponens
A,A ( B ` B is valid only if the right amount of assumptions is given, so that
A,A,A ( B 6` B. This implication has been interpreted as a form of causal connec-
tion between the antecedent and the consequence [8]: the antecedent is consumed by the



causal process and it is not available for further inferences. In order to achieve resource-
sensitivity of the entailment, linear logic rejects the global validity of the structural rules
of the sequent calculus: contraction (C) and weakening (W). Rejecting (W) amounts to
preventing monotonicity of the entailment and rejecting (C) blocks the possibility of
making indistinguishable copies of the assumptions. By rejecting (W) and (C), we are
lead to split the classical connectives into two classes: multiplicatives and additives. For
instance, the classical conjunction ∧ splits into two distinct operators: the multiplicative
⊗ (“tensor”) and the additive & (“with”) [7, 8]. Since monotonicity fails in general, the
tensor conjunction for instance does not satisfy A ⊗ B 6( B nor A ⊗ B 6( A, by
contrast the additive conjunction does: A & B ( A and A & B ( B. Analogous
distinction can be made for disjunction. We will use an intuitionistic variant of linear
logic, thus we shall have the implication ( instead of the multiplicative disjunction.
By slightly abusing the notation, we will denote the additive disjunction by ∨.

For our purpose, the resource-sensitive nature of linear logic is fundamental as it is
capable of handling an important distinction between the truth makers of a proposition:
we will see that a formulaA⊗B will be made true by two different coalitions of agents,
one supporting A and one supporting B, whereas A& B will be made true by a single
coalition, cf. [19]. For the sake of simplicity, we shall stick to a fragment of intuitionistic
linear logic (exponential-free). Moreover, as we shall see in the next section, we assume
distributivity of additive connective & over ∨. Distributivity is not valid in linear logic.
By slightly abusing the notation, we shall call our fragment by ILLD1. The motivation
for adding distributivity is mainly technical: it is due to the fact that we can still prove
soundness and completeness wrt a simple Kripke-like model.

The language of ILLD, LILLD, then is defined as follows:

A ::= 1 | p | A⊗A | A&A | A( A | A ∨A

where p ∈ Atom.

3.1 Hilbert system for ILLD

We introduce the Hilbert system for ILLD, that has been basically developed in [1], see
also [24, 16] .We define the Hilbert-style calculus by introducing a list of axioms in
Table ?? and by defining the following notion of deduction. The concept of deduction
of linear logic requires a tree-structure in order to handle the hypothesis in the cor-
rect resource-sensitive way. This entails that, in particular, in linear logic, every modus
ponens application (cf. (-rule) applies to a single occurrence of A and of A( B.

The notion of proof in the Hilbert system is defined as follows.

Definition 1 (Deduction in H-ILLD). A deduction tree in H-ILLDD is inductively con-
structed as follows. (i) The leaves of the tree are assumptions A ` A, for A ∈ LILLD, or
` B where B is an axiom in Table 1 (base cases).

(ii) We denote by
D

Γ ` A a deduction tree with conclusion Γ ` A. If D and D′ are
deduction trees, then the following are deduction trees (inductive steps).

1 Note that, since distributivity hold, ILL D is also known as a contractionless relevance logic
[16], which is a decidable relevance logic [15]. We leave a proper comparison with the families
of substructural and relevance logics for future work.



1. ` A ( A
2. ` (A ( B) ( ((B ( C) ( (A ( C))
3. ` (A ( (B ( C)) ( (B ( (A ( C))
4. ` A ( (B ( A⊗B)
5. ` (A ( (B ( C)) ( (A⊗B ( C)
6. ` 1
7. ` 1 ( (A ( A)
8. ` (A & B) ( A
9. ` (A & B) ( B

10. ` ((A ( B) & (A ( C)) ( (A ( B & C)
11. ` A ( A ∨B
12. ` B ( A ∨B
13. (A ( C) & (B ( C) ( (A ∨B ( C)
14. A & (B ∨ C) ( (A & B) ∨ (A & C)
15. (A ∨B) & (A ∨ C) ( A & (B ∨ C)

Table 1. Axioms of ILL

D
Γ ` A

D′

Γ ′ ` A( B
(-rule

Γ, Γ ′ ` B

D
Γ ` A

D′

Γ ` B
&-rule

Γ ` A&B

3.2 Models of ILL

A Kripke-like class of models for ILLD is substantially due to Urquhart [27]. A Kripke
resource frame is a structure M = (M, e, ◦,≥), where (M, e, ◦) is a commutative
monoid with neutral element e, and ≥ is a pre-order on M . The frame has to satisfy the
condition of bifunctoriality: if m ≥ n, and m′ ≥ n′, then m ◦m′ ≥ n ◦ n′. To obtain
a Kripke resource model, a valuation on atoms V : Atom → P(M) is added. It has
to satisfy the heredity condition: if m ∈ V (p) and n ≥ m then n ∈ V (p). The truth
conditions of the formulas of LILLD in the Kripke resource modelM = (M, e, ◦,≥, V )
are the following:

m |=M p iff m ∈ V (p).
m |=M 1 iff m ≥ e.
m |=M A⊗B iff there exist m1 and m2 such that m ≥ m1 ◦m2 and m1 |=M A and
m2 |=M B.

m |=M A&B iff m |=M A and m |=M B.
m |=M A ∨B iff m |=M A or m |=M B
m |=M A( B iff for all n ∈M , if n |=M A, then n ◦m |=M B.

Denote ||A||M the extension of A in M, i.e. the set of worlds of M in which A
holds. A formula A is true in a modelM if e |=M A.2 A formula A is valid in Kripke
resource frames, noted |= A, iff it is true in every model. The heredity condition can be
straightforwardly proved to extend naturally to every formula, that is: For every formula

2 When the context is clear we will write ||A|| instead of ||A||M, and m |= A instead of
m |=M A.



A, if m |= A and m′ ≥ m, then m′ |= A. By means of this semantics, it is possible to
prove that ILL D is sound and complete wrt to the class of Kripke models [27].

4 Linear Bringing-it-about Logic with coalitions (Linear BIAT C)

The (non-normal modal) logic of agency of bringing-it-about [5, 9] has been tradition-
ally developed on top of classical propositional logic. In [21], a version of bringing-
it-about based on ILL has been developed as a logic for modeling resource-sensitive
actions of a single agent. In the next section, we will propose a version Linear BIAT
with coalitions, based on ILLD. We simply label it Linear BIAT C. The bringing-it-
about modality has been discussed in particular by [5, 9]. For each agent a in a set of
agents A, the modality EaA specifies that agent a ∈ A brings about A. The following
principles captures the intended notion of agency [5]:

1. If something is brought about, then this something holds.
2. It is not possible to bring about a tautology.
3. If an agent brings about two things concomitantly then the agent also brings about

the conjunction of these two things.
4. If two statements are equivalent, then bringing about one is equivalent to bringing

about the other.

The logical meaning of the four principle is the following. The first item corresponds
to the axiom T of modal logics: EiA( A. It states that bringing-it-about is effective: if
an action is brought about, then the action affects the state of the world, i.e. the formula
A that represents the execution of the action holds. The second item corresponds to the
axiom ¬Ei> (notaut) in classical bringing-it-about logic. It amounts to assuming that
agents cannot bring about tautologies. The motivation is that a tautology is always true,
regardless what an agent does, so if acting is construed as something that affects the
state of the world, tautologies are not apt to be the content of something that an agent
actually does. Item 3 corresponds to the axiom: EiA ∧ EiB → Ei(A ∧ B). We shall
discuss this principle in detail, when we will approach the linear version of this logic.
The fourth item allows for viewing bringing it about as a modality, obeying the rule of
equivalents: if ` A↔ B then ` EiA↔ EiB.

4.1 Axioms of Linear BIAT C

We assume a set of coalitions C that is closed by disjoint union t. In this version of
BIAT logic, agents are replaced by coalition. We admit singleton coalitions, in that case
the meaning of a coalition C in C is {i}. This move is similar to those made in [25] to
discuss coalitional ability. The language of Linear BIAT with coalition,LLBIATC simply
extends the definition of LILLD, by adding a formula ECA for each coalition C ∈ C.
The axioms of Linear BIAT C are presented in Table 4.1. The Hilbert system is defined
by extending the notion of deduction in Definition 1 by means of the new axioms in
Table 4.1 and of two new rules for building deduction trees, cf. Definition 2.

A number of important differences are worth noticing, when discussing the principle
of agency in linear logics. Principle 1 is captured by Axiom 16, that is, the linear version



of T: EaA ( A. Since in linear logics all the tautologies are not provably equivalent,
principle 2 changes into an inference rule, that is (∼ nec) in Definition 2: if ` A, then
ECA ` ⊥. That means that, if a formula is a theorem, a coalition that brings it about
implies the contradiction3. Moreover, the rule (ECre) captures the fourth principle.

The principle for combining actions (Item 3 in the list) is crucial here: it can be
interpreted in linear logic in two ways, namely, in a multiplicative way by ⊗ (Axiom
18) and in an additive way by & (Axiom 17) The distinction between the two types
of combination is crucial for preventing collective irrationality [19]. The point is that
the multiplicative combination, in our interpretation, requires two different winning
coalitions that support the propositions, whereas the additive combination forces the
same coalition to support both propositions. This distinction is reflected by the resource-
sensitive nature of the two conjunctions. For instance, one can prove thatC ( A,D (
B ` C ⊗ D ( A ⊗ B and C ( A,C ( B ` C ( A & B, that is in the former
case the combination of hypotheses B ⊗ C is required, whereas in the latter only C
is required. Therefore, Axiom 17 means that if the same coalition brings about A and
brings about B, then the same coalition can bring about the combination of A and B:
A&B.

We define the disjoint union of two coalitions C tD by C ∪D, if C ∩D = ∅ and
C t D = (C × {1}) ∪ (D × {0}), otherwise. Axiom 18 means that if a coalition C
brings about action A and coalition C ′ brings about action B then, the disjoint union of
two coalitions C tC ′ brings about the combination of actions A⊗B. It is important to
stress that the condition of disjointness of C and C ′ is crucial for modelling the group
actions defined by majority in a consistent way. In particular, the condition shows that
the individuals that are member of the coalition are all equally relevant to make the
proposition accepted. Take for instance the case of E{1,2}A and E{2,3}. If we enable the
inference to E{1,2,3}A⊗B, then we would lose the information concerning the possibly
crucial contribution of agent 2 in both coalitions.

Axiom 17 and 18 are reminiscence of Coalition Logic [17]. Note that we do not
assume any further axiom of coalition logic. For instance, no coalition monotonicity.
That is motivated by the fact that we are modelling profile-reasoning, that is, we start by
a fixed profile of individual attitudes and we want to capture, by means of the modality
E, how the group reasons about those propositions that have been accepted by majority
in that profile. In this setting, given a profile of individual attitudes, there exists only
one coalition that supports a proposition that has been accepted by majority. This is a
different perspective wrt coalition logic and logic of coalitional ability [25].

Moreover, the principles for combining actions, such as Axiom 17 and 18, have been
criticized on the ground that coalitions C andD may have different goals, therefore it is
not meaningful to view the action of C tD as a joint action. However, the aggregative
view of group actions defined by means of the majority rule presupposes that the group
is not defined by means of a shared goal. Therefore, Axioms 17 and 18 are legitimate
from this point of view.

The following definition extends the concept of deduction to Linear BIAT C.

Definition 2 (Deduction in Linear BIAT C). A deduction tree in Linear BIAT C de-
noted by D is inductively constructed as follows. (i) The leaves of the tree are assump-

3 This amounts to negating ECA, according to intuitionistic negation.



- All the axioms of ILL (cf. Table 1)
16 ECA ( A
17 ECA & ECB ( EC(A & B)
18 ECA⊗ EDB ( ECtD(A⊗B)

Table 2. Axioms of Linear BIAT

tions A ` A, for A ∈ LLBIATC , or ` B where B is an axiom in Table 2 (base cases).
(ii) If D and D′ are deduction trees, then the trees in Definition 1 are also deduction
trees in Linear BIAT. Moreover, the following are deduction trees (inductive steps).

D
` A( B

D′

` B ( A EC(re)` ECA( ECB

` A ∼ nec
` ECA( ⊥

4.2 Models of Linear BIAT C

The semantics of the bringing-it-about modality is defined by adding a neighborhood
semantics on top of the Kripke resource frame. A neighborhood function is a mapping
N : M → P(P(M)) that associates a world m with a set of sets of worlds (see [4]).
The intuitive meaning of the neighborhood in this setting is that it associates to each
world a set of propositions that can be done by coalition C. Neighborhood functions
are related to effectivity function introduced in Social Choice Theory [14] for modelling
coalitional power.

In order to interpret the modalities in a modal Kripke resource frame, we take one
neighborhood function NC for every coalition C ∈ C and we define:

m |= ECA iff ||A|| ∈ NC(m)

Note that it is possible that m |= ECA, yet m′ 6|= ECA for some m′ ≥ m. That is,
heredity may fail in the extension of |= for LLBIATC . We will then require our neighbor-
hood function to satisfy the condition that if some setX ⊆M is in the neighborhood of
a world, then X is also in the neighborhood of all the worlds that are above according
to ≥.

if X ∈ NC(m) and n ≥ m then X ∈ NC(n) (1)

The rule (ECre) does not require any further condition on Kripke resource frames,
it is already true because of the definition of EC .

The rule (∼ nec) requires:

if (X ∈ NC(w)) and (e ∈ X) then (w ∈ V (⊥)) (2)

Axiom 16 requires:

if X ∈ NC(w) then w ∈ X (3)

We turn now to action compositions. Axiom 17 requires:



if X ∈ NC(w) and Y ∈ NC(w), then X ∩ Y ∈ NC(w) (4)

Let X ◦ Y = {x ◦ y | x ∈ X and y ∈ Y }, the condition corresponding to the
multiplicative version of action combination, Axiom 18, requires that the upper closure
of X ◦ Y , denote it by (X ◦ Y )↑, is in NCtD(x ◦ y):

if X ∈ NC(x) and Y ∈ ND(y) , then (X ◦ Y )↑ ∈ NCtD(x ◦ y) (5)

Summing up, Linear BIAT is evaluated over the following models:

Definition 3. A modal Kripke resource model is a structureM = (M, e, ◦,≥, NC , V )
such that:

– (M, e, ◦,≥) is a Kripke resource frame;
– For any C ∈ C, NC is a neighborhood function that satisfies conditions (1), (2),

(3), (4), and (5).
– V is a valuation on atoms, V : Atom→ P(M).

Heredity is true as well for Linear BIAT C over modal Kripke resource models for
modal formulas, as an easy induction shows.

4.3 Soundness and completeness

We approach now the proof of soundness and completeness of Linear BIAT C wrt
Kripke resource frames that satisfy the conditions we put. The proof for the propo-
sitional case is mainly due to [27]. A proof of soundness and completeness for Linear
BIAT in case of as single agent is provided in [21, 22]. The proof that we present here is
a simple adaptation of those proofs for the case of the Hilbert system for Linear BIAT
C.

Theorem 1 (Soundness of Linear BIAT with Coalitions). Linear BIAT C is sound
wrt the class of Kripke resource frames that satisfy (1) (2), (3), (4), and (5): if Γ ` A,
then Γ |= A.

Proof. We only present the cases for axioms 17 and 18. The other cases are handled in
similar way in [21].

We show that axiom 17 is valid. That is, for every model, e |= ECA & ECB (
EC(A & B). That means, by definition of (, for every x, if x |= ECA & ECB, then
x |= EC(A & B). If x |= ECA & ECB, then x |= ECA and x |= ECB, that entails,
by definition of EC , that ||A|| ∈ NC(x) and |B|| ∈ NC(x). Thus, by condition (4), we
infer ||A|| ∩ ||B|| ∈ NC(x). That means x |= EC(A&B).

We show that axiom 18 is valid, e |= ECA ⊗ EDB ( EC∪D(A ⊗ B). That is,
for every x, if x |= ECA ⊗ EDB, then x |= EC∪D(A ⊗ B). If x |= ECA ⊗ EDB,
then by definition of ⊗, there exist y and z, such that x ≥ y ◦ z and y |= ECA and
z |= EDB. Therefore, ||A|| ∈ NC(y) and ||B|| ∈ ND(z), this by condition (5), we
infer that (||A|| ◦ ||B||)↑ ∈ NCtD(y ◦ z). Thus, since x ≥ y ◦ z, by condition (5),
(||A|| ◦ ||B||)↑ ∈ NCtD(x), that is x |= ECtD(A⊗B).



We turn now to show completeness. Firstly, we define the canonical model, which
is adapted from [21].

In the following, tm is the multiset union. Also, we denote by∆? = A1⊗· · ·⊗Am,
for Ai ∈ ∆. Moreover, the extension of A in the canonical model is |A|c = {Γ | Γ `
A}.

Definition 4. LetMc = (M c, ec, oc,≥c, N c, V c) such that:

– M c = {Γ | Γ is a finite multiset of formulas};
– Γ ◦c ∆ = Γ tm ∆;
– ec = ∅;
– Γ ≥c ∆ iff Γ ` ∆∗;
– Γ ∈ V c(p) iff Γ ` p;
– For every C ∈ C, N c

C(Γ ) = {| A |c| Γ ` ECA}.

Lemma 1. Mc is a modal Kripke resource model that satisfies (1) (2), (3), (4), and (5).

Proof. We only show the case of condition (4), and (5), which differs from the proof in
[21].

Case of Condition (4). Suppose X ∈ N c
C(Γ ) and Y ∈ N c

C(Γ ). By definition of N c
C ,

X ∈ {X =| A |c| Γ ` ECA}, thus Γ ` ECA is provable in the Hilbert system.
Analogously, Γ ` ECB, where Y = |B|c. Then, we can prove in the Hilbert system
that Γ ` ECA& ECB, by means of the &-rule:

D
Γ ` ECA

D′

Γ ` ECB
&-rule

Γ ` ECA& ECB

By axiom 12 and (-rule (i.e. modus ponens), we conclude Γ ( EC(A & B) as
follows:

Γ ` ECA& ECB ` ECA& ECB ( EC(A&B)
(-rule

Γ ` ECA&B

Since Γ ` EcA&B, we have that ||A&B|| ∈ N c
C(Γ ). Therefore, we can conclude

since ||A&B|| = ||A|| ∩ ||B|| = X ∩ Y .

Case of Condition (5). Assume X ∈ N c
C(Γ ), Y ∈ N c

D(∆). By definition of canonical
neighborhood, we have: Γ ` ECA, ∆ ` EDB, where ||A|| = X and ||B|| = Y . We
can prove that Γ,∆ ` ECA⊗ EDB as follows.

Γ ` ECA ` ECA( (EDB ( (ECA⊗ EDB)) (ax. 4)
(-rule

Γ ` EDB ( ECA⊗ EDB ∆ ` EDB
(-rule

Γ,∆ ` ECA⊗ ECB

By means of axiom 18, we infer Γ,∆ ` ECtD(A⊗B).



Γ,∆ ` ECA⊗ ECB ` ECA⊗ EDB ( EC∪D(A⊗B) (ax 13, C ∩D = ∅)
(-rule

Γ,∆ ` EC∪DA⊗B

Therefore, (||A|| ◦ ||B||)↑ ∈ N c
CtD(Γ ◦ ∆). We conclude by noticing that (X ◦

Y )↑ = (||A|| ◦ ||B||)↑.

We are ready now to prove the truth lemma. The proof is as usual by induction on
the complexity of the formula A and there is no significative difference wrt the proof in
[21]. We denote by Γ |=c A the satisfaction relation wrt the canonical model.

Lemma 2 (Truth lemma). If Γ |=c A, then Γ ` A.

As usual, by means of the truth lemma, one establishes completeness.

Theorem 2 (Completeness of Linear BIAT with Coalitions). Linear BIAT C is sound
wrt the class of Kripke resource frames that satisfy (1) (2), (3), (4), and (5): If Γ |= A,
then Γ ` A.

5 Aggregative view of group attitudes

We want to interpret the relationship between individual and collective attitudes by
means of the logic Linear BIAT C. However, the majority rule is not interpreted within
the logic by means of a logic formula, as for instance in [23, chapter 4]. Recall that in
intiuitionistic logics, one can define ∼ A = A( ⊥.

We want to associate to each individual judgment set Ji, that contains formulas of
an agenda defined in classical logic, a set J̄i of Ei-formulas of Linear BIAT C. Recall
that the additive connectives of Linear BIAT C are & and ∨ and the multiplicative
connectives are ⊗ and (.

If ϕ is a formula in classical logic, then its additive translation in Linear BIAT C is
defined as follows: p′ = p, for p atomic; (A∧B)′ = A′&B′ and (A∨B)′ = A′ ∨B′.

For each individual judgment set Ji, we define the set J̄i = {Eiϕ
′ | ϕ ∈ Ji}. That

is, we view the elements of the agenda that are supported by an agent i as actions that
she/he is proposing to bringing about as a group action. Moreover, it is easy to see that,
if Ji is a judgment set (i.e. it is individually rational) according to classical logic, then
J̄i is a judgment set (individually rational) wrt to Linear BIAT C.

Note that any J̄i cannot contain multiplicative formulas. Firstly, by the additive
translation, any ϕ occurring in Eiϕ is additive (i.e. it contains only &, ∨, ∼). Secondly,
J̄i cannot infer any multiplicative formula of the form Eiϕ, since that the only axiom
that would entail Eiϕwhere ϕ is a multiplicative formula is Axiom 18, but that demands
making the disjoint union of coalitions, e.g. from EiA,EiB one can only infer Eiti(A⊗
B).

This motivates the role of the additive translation ()′ in modelling individual atti-
tudes: by means of Linear BIAT C, we can view individual judgment sets as supported
by a single coalition, that is, the coalition made by the agent i who is supporting her/his



propositions. Therefore, multiplicative formulas cannot be in the individual judgment
sets, because they would require the attitudes of at least another agent.

We associate now a set of formulas in Linear BIAT C to the set of formulas obtained
by majority m(J) for a given profile J. Denote such a set by JG. We say that coalition
C supports ϕ in profile J iff C = Nϕ. Thus,

J̄G = {ECϕ | ϕ ∈ m(J) and C supports ϕ in J} (6)

For instance, in the example of discursive dilemma in Section 2, we have the fol-
lowing sets of formulas of Linear BIAT C:

J̄1 = {E1A,E1B,E1(A&B)}
J̄2 = {E2 ∼ A,E2B,E2 ∼ (A&B)}
J̄3 = {E3A,E3 ∼ B,E3 ∼ (A&B)}
J̄G = {E1,3A,E1,2B,E2,3 ∼ (A&B)}

Note that each set J̄i is consistent and complete wrt Linear BIAT C.4 We show that
J̄G is consistent, complete and deductively closed wrt Linear BIAT C.

Definition 5 (Majoritarian group reasoning). Majoritarian group reasoning is de-
fined as the deductive closure wrt Linear BIAT C of J̄G: cl(J̄G).

By adapting the proof in [19], we can show that group reasoning by means of Linear
BIAT C is always consistent, that is, for every profile of judgment sets, although m(J)
may be inconsistent wrt classical logic, J̄G is consistent wrt Linear BIAT C.

Theorem 3. For every profile J, majoritarian group reasoning cl(J̄G) is consistent,
complete, and deductively closed wrt Linear BIAT C.

Proof. In [19], it is proved that, for every agenda of formulas defined in the language of
additive linear logic, the majority rule is always consistent, i.e. for any profile J,m(J) is
consistent. The proof is based on the fact that, in additive linear logic, every minimally
inconsistent5 set has cardinality 2. This follows from the fact that every deduction in the
additive fragment of linear logic contains exactly two formulas A ` B, therefore every
minimally inconsistent set must be of the form A,∼ B `.

By means of the characterization in [13, 6], one can infer that, if every minimally
inconsistent subset of an agenda X has cardinality less then 3, then the majority rule is
consistent for every profile of judgment sets defined on X .

Thus, firstly, we need to show that every minimally inconsistent set in additive linear
logic plus distributivity (axiom 14 and 15) has cardinality 2. We show that this is the
case. If every deduction in the additive fragment of Linear BIAT contains exactly two
formulas, then this holds also for the additive fragment plus axioms 14 and 15. It is
sufficient to notice that, if Γ ` A is derivable in the additive fragment, since axioms 14
and 15 are of the form ϕ1 ( ϕ2, by means of them and of the (-rule the number of
formulas in the derivation does not increase.

4 Note that J̄ is consistent iff it is not the case that J̄ ( ⊥.
5 Recall that a minimally inconsistent set Y is an inconsistent set that does not contain inconsis-

tent subsets.



In order to conclude, it is enough to notice that if a set of formula S is consistent
(and S does not contain a tautology nor a contradiction), then, for every i, S′ = {Eiϕ |
ϕ ∈ S} is also consistent. Therefore, J̄G is consistent wrt the additive fragment. Thus,
cl(J̄G) is consistent and deductively closed wrt Linear BIAT C.

Therefore, by reasoning in Linear BIAT C about the set of formulas that are obtained by
majority, i.e. about J̄G, we can consistently model the actions of a majoritarian group. In
order to exemplify that J̄G is consistent, we can show that we can infer E{1,2}t{1,3}(A⊗
B) from formulas in J̄G, however this does not contradict E{2,3} ∼ (A&B).

Firstly,

E{1,3}A ` E{1,3}A (as.) ` E{1,3}A ( (E{1,2}B ( E{1,3}A⊗ E{1,2}B) (ax 4)
(-rule

E{1,3}A ` E{1,2}B ( E{1,3}A⊗ E{1,2}B)

Then,

E{1,3}A ` E{1,2}B ( E{1,3}A⊗ E{1,2}B) E{1,2}B ` E{1,2}B as.
(

E{1,3}A,E{1,2}B ` E{1,3}A⊗ E{1,2}B

Finally, by means of Axiom 18 and the (-rule:

E{1,3}A,E{1,2}B ` E{1,3}A⊗ E{1,2}B ` E{1,3}A⊗ E{1,2}B ( E{1,3}t{1,2}(A⊗B)

E{1,3}A,E{1,2}B ` E{1,3}t{1,2}(A⊗B)

In order to show that E{1,2}t{1,3}(A⊗B) and E{2,3} ∼ (A&B) are not contradic-
tory in Linear BIAT C, we can notice that A ⊗ B and ∼ (A & B) are not inconsistent
in linear logic. By looking at the semantics of the two formulas, they in fact state quite
different things: the former states that there are two truth-makers x1 and x2 one for A
and one for B, whereas the latter states that the is no x such that x is both a truth-maker
of A and truth-maker of B. The reason why the version of J̄G in classical logic is in-
consistent is that it mixes the two interpretations. Indeed, J̄G turns inconsistent, if we
are able to infer from it, for some combination of coalitions C, EC(A & B). But this
cannot be the case in Linear BIAT C, because there is no coalition C that supports both
A and B in J̄G. Therefore, in this setting, the discursive dilemma shows the complex
nature of majoritarian reasoning, instead of being a mere logical inconsistency.

To conclude, our approach shows that it is in principle possible to talk about ma-
joritarian group actions, provided we keep track of the complex internal structure of the
alleged group agent, that is, the relationship between its internal coalitions. We may be
tempted to define an agent G, the majoritarian group agent, who is responsible for all
the group actions, i.e. of the formulas in J̄G. This can be done for instance by means of
the following definition: if ECϕ is in J̄G, for some C and ϕ, then EGϕ. The agency of
G, EG, needs to be carefully investigated because it has to reflect the complexity of the
structure of the coalitions. For instance, we have to prevent axiom 17 to hold for EG.
Otherwise, we will end up facing again inconsistent outcomes: in the example above,
EGA and EGB imply EG(A&B) and that would contradict EG¬(A&B). By contrast,
it is possible to prove that a version of axiom 18 is harmless. We need to replace the



disjoint union of coalitions with an operation of composition such that it is idempotent
on G: X • Y = X t Y , for X,Y 6= G and G • G = G. By rephrasing Axiom 18
for G and •, we have Axiom 18’: EGA⊗ EGB ( EG•G=G(A⊗ B). The reason why
axiom 18’ does not lead to inconsistency is that formulas in the scope of EG other than
those introduced by axiom 18’ are additive. Therefore, there is indeed a viable notion
of majoritarian group agent G, the definition of its agency can be approached by means
of a modality EG that satisfies axiom 16, 18’ and rules (EG(re)) and (∼ nec) of Defi-
nition 2. The actions of the majoritarian group depend on the structure of its coalition
and the formulas of linear logic can express such constraints. Suppose that A and B are
preconditions for the action O. We have two ways of expressing it, an additive and a
multiplicative way: EG(A&B) ( EGO and EG(A⊗B) ( EGO. In the former case,
O is pursued by the group only if a single coalition of agents would pursue A and B;
in the latter case, O is pursued even if the coalitions that support A and B are different.
This means that, in the example above, if the additive constraint is assumed, then the
group shall not pursue O, whereas in case the multiplicative constraint is chosen, from
EG(A⊗ B) and EG(A⊗ B) ( EGO, we can infer that O is performed. We leave the
detailed treatment of EG and of its further principles for future work.

6 Conclusion

We have seen that there is a viable alternative to classical logic for modelling group
actions, when group attitudes are defined by majority. We have used a logic of bringing-
it-about agency grounded on a propositional logic that is tailored to reflect fine-grained
aspects of majoritarian reasoning. Therefore, we enabled the treatment of majoritarian
groups as BDI agents, since we can show that, for any circumstances, the group guar-
antees a modicum of rationality. Future work concerns the study of the computational
complexity of the proposed logic. For instance, the logic of agency based on intuition-
istic linear logic is proved to be in PSPACE in [21]. Moreover, we plan to extend the
treatment that we have proposed to represent other types of collective propositional at-
titudes. It is possible to provide decidable first-order versions of substructural logics in
order to view preference aggregation within judgment aggregation [18]. For other types
of attitude, such as beliefs, we plan to investigate the realm of substructural epistemic
logics.
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