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OVERVIEW

Description Logics and Ontologies,

Modelling ontology aggregation;

Methods from JA;

Voting procedures on ontologies;

Balancing efficiency and fairness;

Extensions: towards fine-grained aggregation.

This part is based on [PE14] and on [PTP+18]
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MOTIVATIONS

We want to apply the analysis of the aggregation procedures
provided by social choice theory and judgment aggregation to
the problem of aggregating several ontologies.

Different individual ontologies provide different and possibly
contrasting information and we ask which ontology better
represent the group information.

Social choice theory shows that the notion of group information
strongly depends on the aggregation procedure we use.

Fairness conditions here can be interpreted as constraints of
impartiality on agents or on propositions.

E.g. anonymity assumes that we do not know which individual
ontology is more reliable.
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ONTOLOGIES

Formal ontologies are increasingly used in a variety of domains
in crucial applications of AI, as well as in Multiagent Systems,
Conceptual Modelling, Database Design, NLP and Software
Engineering.

Ontologies are a way to express the information about a certain
domain in a peculiar way: they intend to make the modelling
choices and the assumptions of the modeller clear, justified, and
sharable among the community of users.

To achieve that, ontologies are ofter written in a logical
language. A very well developed family of languages for
ontologies is the family of Description Logics (DL).
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DESCRIPTION LOGICS

We use the Description Logic ALC as an important example,
however this treatment can be adapted to other description
logics.

The language of ALC is based on an alphabet consisting of
atomic concepts, role names, and object names.

The set of concept descriptions is generated as follows (where A
represents atomic concepts and R role names):

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C
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TBOX AND ABOX

A TBox is a finite set of formulas of the form A v C and A ≡ C
(where A is an atomic concept and C a concept description).

An ABox is a finite set of formulas of the form A(a) and R(a,b).

The semantics of ALC is given by interpretations that map each
object name to an element of its domain, each atomic concept to
a subset of the domain, and each role name to a binary relation
on the domain.

A set of (TBox and ABox) formulas is satisfiable if there exists an
interpretation in which they are all true.
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EXAMPLE OF AN ONTOLOGY

A very simple ontology that specifies (part of) the meaning of what a
left policy is.

LeftPolicy v RaiseWages LeftPolicy v ReduceInequality
LeftPolicy v RaiseWelfare ReduceInequality v Policy
RaiseWages v ReduceInequality LeftPolicy v Policy
RaiseWelfare v ReduceInequality
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ONTOLOGY AGGREGATION

Let us fix a finite set L of ALC formulas over a given alphabet
that includes all the possible ABox formulas.

We call L the agenda and any set O ⊆ L an ontology.

O can be divided into a TBox OT and an ABox OA.

Let On(L) be the set of all those ontologies that are satisfiable.

The closure of a set of formulas Φ ⊆ L is given by
Cl(Φ) := {ϕ ∈ L | Φ |= ϕ}
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ONTOLOGY AGGREGATOR

Let N = {1, . . . ,n} be a finite set of agents. Each agent i ∈ N
provides a satisfiable ontology Oi ∈ On(L).

An ontology profile O = (O1, . . . ,On) ∈ On(L)N is a vector of
such ontologies, one for each agent.

We write NO
ϕ := {i ∈ N | ϕ ∈ Oi} for the set of agents including

ϕ in their ontology under profile O.

An ontology aggregator is a function F : On(L)N → 2L mapping
any profile of satisfiable ontologies to an ontology.
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EXAMPLES

An ontology aggregator is F with F (O) := O1 ∪ · · · ∪On, which
returns the union of the individuals ontologies. The ontology
obtained may not be satisfiable.

An ontology aggregator is F with F (O) := O1 ∩ · · · ∩On, which
returns the intersection of the individuals ontologies. The
ontology obtained may be very poor.
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AN EXAMPLE: THE MAJORITY RULE

The majority rule (accept a formula if and only if a majority of the
agents do) can lead to unsatisfiable outcomes, as we can easily
simulate the discursive dilemmas from Judgment Aggregation.

Suppose three agents share a common TBox with two formulas:

C3 ≡ C1 u C2 C4 v ¬C3

Furthermore, suppose the three ABoxes are as follows:

C1(a) C2(a) C3(a) C4(a)
Agent 1 yes yes yes no
Agent 2 yes no no yes
Agent 3 no yes no yes
Majority yes yes no yes

Individual ontologies are satisfiable but the collective one is not.

E.g. The original example of discursive dilemma can be viewed
as a case in which OT expresses the legal doctrine (Kornhauser
and Sager, 1986).
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The standard doctrinal paradox is slightly simpler than our example
above.

The TBox only consists of the formula C3 ≡ C1 u C2 and the
individual ABoxes are as follows:

C1(a) C2(a) C3(a)
Agent 1 yes yes yes
Agent 2 yes no no
Agent 3 no yes no
Majority yes yes no

Observe that this is not a paradox in the same (strong) sense as
the earlier example.
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The TBox only consists of the formula C3 ≡ C1 u C2 and the
individual ABoxes are as follows:

C1(a) C2(a) C3(a)
Agent 1 yes yes yes
Agent 2 yes no no
Agent 3 no yes no
Majority yes yes no

As before, the group accepts that a belongs to both C1 and C2.
Given C3 ≡ C1 u C2, we can now infer that the group also
accepts C3(a) to be true, even if this fact is not explicitly
recorded in the collective ontology.

That is, the only “paradox” we encounter here is that, even
though the three individual ontologies are deductively closed
(with respect to the set of four formulas under consideration
here), this is not the case for the collective ontology.
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BASIC FEATURES OF THIS MODELLING

We restrict for now to “coarse” merging: the ontology to be
constructed will be a list of some of the formulas included in the
individual ontologies.

We shall deal with “fine” merging later, where we might also
want to construct entirely new formulas from those provided by
the individuals.

Open vs Closed World Assumption: we need to adapt the
standard JA framework by dropping completeness (a agent
accepts A or accepts ¬A): here it would entail that an agent
cannot express her lack of knowledge concerning the application
of both A and ¬A to a certain object.
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Syntactic vs Semantic axioms (explicit vs implicit knowledge).
We define “syntactic” axioms, they relate to the formulas that
occur explicitly in the ontologies of individual agents or in the
collective ontology.

We will contrast this with “semantic” axioms that make reference
to the formulas that can be inferred implicitly from those
ontologies.
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SYNTACTIC AXIOMS (STANDARD)

The usual social choice theory and judgment aggregation axioms can
be restated as follows:

Unanimity: F is called unanimous if O1 ∩ · · · ∩On ⊆ F (O) for
every profile O ∈ On(L)N .

Anonymity: F is called anonymous if for any profile
O ∈ On(L)N and any permutation π : N → N we have that
F (O1, . . . ,On) = F (Oπ(1), . . . ,Oπ(n)).

Independence: F is called independent if for any ϕ ∈ L and
profiles O,O′ ∈ On(L)N , we have that ϕ ∈ Oi ⇔ ϕ ∈ O′i for all
i ∈ N implies ϕ ∈ F (O)⇔ ϕ ∈ F (O′).

Monotonicity: F is called monotonic if for any i ∈ N , ϕ ∈ L, and
O,O′ ∈ On(L)N with Oj =O′j for all j 6= i , we have that ϕ ∈ O′i \Oi

and ϕ ∈ F (O) imply ϕ ∈ F (O′).
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SYNTACTIC AXIOMS (SPECIFIC)

We introduce the following specific axioms we might want for our
ontology aggregators:

Groundedness: F is called grounded if F (O) ⊆ O1 ∪ · · · ∪On for
every profile O ∈ On(L)N .

Exhaustiveness: F is called exhaustive if there exists no
satisfiable set Φ ⊆ O1 ∪ · · · ∪On with F (O) ⊂ Φ for any profile
O ∈ On(L)N .

Group Closure: F is called group-closed if there exists no set
Φ ⊆ O1 ∪ · · · ∪On with F (O) |= Φ and F (O) ⊂ Φ for any profile
O ∈ On(L)N .
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NEUTRALITY

An important axiom is JA neutrality, which, intuitively, requires all
formulas to be treated symmetrically. In fact, there are a number of
possible interpretations of this notion, including these:

Neutrality: F is called neutral if for any ϕ,ψ ∈ L and
O ∈ On(L)N we have that ϕ ∈ Oi ⇔ ψ ∈ Oi for all i ∈ N implies
ϕ ∈ F (O)⇔ ψ ∈ F (O).

Acceptance-Rejection Neutrality: F is called
acceptance-rejection neutral if for any ϕ ∈ L and O ∈ On(L)N

we have that ϕ ∈ Oi ⇔ ψ 6∈ Oi for all i ∈ N implies
ϕ ∈ F (O)⇔ ψ 6∈ F (O).
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In JA, when abandoning completeness, acceptance-rejection
neutrality is usually assumed.

Our objection to this axiom is stated as follows:

Proposition

Any ontology aggregator that satisfies acceptance-rejection neutrality
violates exhaustiveness.
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SEMANTIC AXIOMS

We propose the following definition of semantic axioms that model a
form of implicit knowledge.

Semantic Unanimity: F is called semantically unanimous if
Cl(O1) ∩ · · · ∩ Cl(On) ⊆ Cl(F (O)) for every profile O ∈ On(L)N .

Semantic Groundedness: F is called semantically grounded if
Cl(F (O)) ⊆ Cl(O1) ∪ · · · ∪ Cl(On) for every O ∈ On(L)N .

Semantic Exhaustiveness: F is called semantically exhaustive
if there exists no satisfiable set Φ ⊆ Cl(O1) ∪ · · · ∪ Cl(On) with
Cl(F (O)) ⊂ Φ for any O ∈ On(L)N .
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IMPLICIT VS EXPLICIT KNOWLEDGE

For most aggregators, syntactic and semantic axioms do not
entail each other. E.g. The majority rule is syntactically
unanimous but not semantically unanimous.

Intuitively, semantic unanimity is the (much) stronger property.
This intuition can be confirmed for the following aggregators:

Proposition

Any satisfiable and exhaustive ontology aggregator that is semantically
unanimous is unanimous.

Analogous results hold for the other axioms.

In the next slides, we shall discuss some concrete voting
procedures.
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THE MAJORITY RULE

Let M(O) = {ϕ ∈ L | |NO
ϕ | > n

2} for all O ∈ On(L)N .

In JA, the majority rule provides consistent outcomes on
agendas that satisfy the median property (List and Puppe,
2009).

We can refine this result for Description Logics as follows.
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THE MAJORITY RULE

We say that L satisfies the T -median property if and only if for
every set of ABox formulas X ⊆ LA such that T ∪ X is
unsatisfiable there exists a set Y ⊆ X with cardinality at most 2
such such T ∪ Y is also unsatisfiable.

We obtain the following characterisation:

Proposition

The majority rule will return a satisfiable ontology for any profile with
a common TBox T if and only if the agenda L satisfies the T -median
property.
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QUOTA RULES

We can generalise the idea underlying the majority rule and
accept a formula for the collective ontology whenever the
number of agents who do so meet a certain quota.

This gives rise to the family of quota rules:

Quota rules

Let q ∈ [0,1]. The quota rule with quota q is the ontology aggregator
Fq with Fq(O) = {ϕ ∈ L | |NO

ϕ | > q · n} for all O ∈ On(L)N .
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QUOTA RULES

The majority rule violates semantic unanimity.

In fact, any quota rule does, unless we lower the quota so far as
to obtain the trivial union aggregator:

Proposition

A quota rule with quota q for n agents is semantically unanimous if
and only if q 6 1

n .
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TWO PROCEDURES DESIGNED FOR ONTOLOGIES

We see now two procedures design for ontology aggregation.

That is, they are designed to balance the preservation of
consistency with the satisfaction of the other axioms:

Support-based procedures

Two-stages procedures
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SUPPORT-BASED PROCEDURES

We order the formulas in terms of the number of agents
supporting them.

We introduce a priority rule� mapping each profile O to a strict
linear order�O on L such that ϕ�O ψ implies |NO

ϕ | > |NO
ψ | for

all ϕ,ψ ∈ L.
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Support-based procedures:

Given a priority rule �, the support-based procedure with � is
the ontology aggregator SBP� mapping any profile O ∈ On(L)N to
SBP�(O) := Φ for the unique set Φ ⊆ L for which ϕ ∈ Φ if and only if

(i) NO
ϕ 6= ∅ and

(ii) {ψ ∈ Φ | ψ �O ϕ} ∪ {ϕ} is satisfiable.

The SBP clearly satisfies the axioms of anonymity, monotonicity,
groundedness (due to condition (i)), and exhaustiveness (due to
condition (ii)).

Neutrality is violated by virtue of having to fix a priority rule�
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TWO-STAGES PROCEDURES

We may give priority to the terminology or to the assertions.

From JA, we have the premise-based procedure: individuals
vote on the premises by majority and then draw the conclusions,
and the conclusion-based procedure: individuals draw their own
conclusions and then votes on them by majority.

E.g. assertion-based procedures stress the information coming
from the ABox.
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Assertion-based procedure:

An (irresolute) assertion-based procedure maps each profile O to the
set of ontologies obtained as follows:

1 Choose an aggregator FA restricted to ABox formulas, and let
FA(O) be the outcome.

2 Then the TBox is defined as follows:

FT (O) = argminO∈On(L)

∑
i∈N

d(FA(O) ∪OT
i ,O)

(where d is a distance)
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SUMMING UP

We presented a model inspired by judgment aggregation to
define aggregation of individual ontologies for the case of the
coarse merging.

Different aggregation procedures define different notion of group
information and the axiomatic analysis spells out the properties
of such notions.

We presented our analysis distinguishing between implicit and
explicit knowledge by the distinction between semantic and
syntactic axioms.

We introduced and discussed voting rules and properties of
aggregators with the aim of balancing the satisfiability and
fairness.
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TOWARDS FINE MERGING

We approach the fine merging of ontologies as follows.

We fix an aggregation procedure such as the majority rule.

We know that it may return inconsistent ontologies.

We propose a strategy to repair the collective ontology by
building up formulas that are close enough to the individuals’
original formulas. That is,

We let agents votes on the formulas of the ontology by relying on
Judgment Aggregation.

We introduce a strategy for repairing the possibly inconsistent
ontology by means of axiom weakening.
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VOTING ON ONTOLOGIES

Suppose three agents submit their views about what a left policy is
and agree to elect a collective opinion by means of the majority rule.

TABLE: A voting scenario

LeftPolicy v RaiseWages LeftPolicy v RaiseWelfare RaiseWages u RaiseWelfare v ⊥

1 yes yes no
2 yes no yes
3 no yes yes

Maj. yes yes yes

In this case, the concept of left policy is not satisfiable, although it is
for each agent.
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AXIOM WEAKENING

We propose to repair possibly inconsistent collective ontology by
means of Axiom Weakening.

The weakening of an axiom C v D is given by specialising the
concept C or by generalising the concept D.

Specialisations and generalisations make sense only with respect to
a reference ontology, e.g.

LeftPolicy v RaiseWages LeftPolicy v ReduceInequality
LeftPolicy v RaiseWelfare ReduceInequality v Policy
RaiseWages v ReduceInequality LeftPolicy v Policy
RaiseWelfare v ReduceInequality

FIGURE: A reference ontology
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ALGORITHM FOR REPAIRING COLLECTIVE ONTOLOGIES

Given a profile of voting on agents’ ontologies, an aggregation
procedure (the majority rule), and a reference ontology,

the following algorithm describes how to fix a possibly
inconsistent collective ontology:
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The procedure ensures that the output is a consistent ontology.

Moreover, the algorithm selects candidates for axiom weakening
that are as close as possible to the original axiom.

The complexity of the algorithm depends on the complexity of
logic used to formalise the conceptualisation.
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