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Abstract. We propose a formal framework to examine the relationship between (scientific) models and empirical observations.
To make our analysis precise, models are reduced to first-order theories that represent both terminological knowledge—e.g., the
laws that are supposed to regulate the domain under analysis and that allow for explanations, predictions, and simulations—and
assertional knowledge—e.g., information about specific entities in the domain of interest. Observations are introduced into the
domain of quantification of a distinct first-order theory that describes their nature and their organization and takes track of
the way they are experimentally acquired or intentionally elaborated. A model mainly represents the theoretical knowledge or
hypotheses on a domain, while the theory of observations mainly represents the empirical knowledge and the given experi-
mental practices. We propose a precise identity criterion for observations and we explore different links between models and
observations by assuming a degree of independence between them. By exploiting some techniques developed in the field of
social choice theory and judgment aggregation, we sketch some strategies to solve inconsistencies between a given set of obser-
vations and the assumed theoretical hypotheses. The solutions of these inconsistencies can impact both the observations—e.g.,
the theoretical knowledge and the analysis of the way observations are collected or produced may highlight some unreliable
sources—and the models—e.g., empirical evidences may invalidate some theoretical laws.
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1. Introduction

Conceptual modeling and knowledge representation mainly focus on characterizing how a given do-
main is structured, i.e., they identify a set of concepts and relations together with the constraints that
hold for this domain. In these fields, the structure of the domain is usually intended to reflect the point
of view of some experts, by endorsing a moderately subjective stance. Scientific theories have a similar
goal but they usually embrace a more objective perspective: the aim is to capture how the world is, to
explain and predict what happens in the world. In both cases, the aim is to produce a model (in the sense
of conceptual modeling) or a theory (in the sense of model theory) of the domain—in the jargon of de-
scription logics, a terminological box (TBox). In this representational context, the data (the information
about specific entities) usually reduce to instantiations of the model, an assertional box (ABox). Data
sharing can then be achieved by integrating and aligning different models (of the same domain) while
data analysis is grounded on logical inferences from the instantiated model (TBox+ABox).
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Recently, an enormous volume of data collected by heterogenous sources or resulting from complex
analyses is made available on the Internet. The homogeneity of the data taken into account and the un-
derstanding of their provenance critically impact the quality, reliability, validity, and trustworthiness of
the analyses performed on these data. This is especially relevant for the e-science community and, in par-
ticular, for large-scale and distributed collaborative science where data-exchange is sometimes directed
to ensure the reproducibility of scientific analyses and experiments. This leads to the need to explicitly
represent the nature of data, the way they have been acquired, produced, modified, etc. The (sharing
of the) model of the domain is not enough, one needs (to share) a model of the data. Measurements,
observations, and analyses have a subjective nature that transcends the conceptual apparatus necessary
to represent the domain and require a step towards an operationalist or constructivist stance about data.
Furthermore, physics, economics, medicine, biology, psychology, cognitive science, and sociology are
deeply founded on (statistical) data analysis and testing. A double subjectivity is present here: the ac-
quisition of raw data and their transformation or aggregation into indicators or scores, i.e., pieces of
information that are produced starting from raw data but that are not directly observable, what Bogen
and Woodward (1988) calls phenomena (see Section 2 for more details).! Calibration, measurement
procedures, and measurement standards inter-subjectively mediate and control the collection of raw data
while mathematical techniques of analysis (e.g., procedures to manage measurement errors) smooth the
difficulty to assure reliable analytical results.

Although the relevance and importance of these aspects is widely recognized, the Semantic Web, Ap-
plied Ontology, Conceptual Modeling, and Database communities started to pay attention to the nature
and the provenance of data only quite recently with the intent to support the sharing and integration of
data, so as to enable interoperability for sensors and sensing systems, and to produce detailed descrip-
tions of scientific investigations. The approaches focused on provenance tend to introduce information
about the life-cycle of data by means of annotations(-graphs). In this context, the Open Provenance
Model?> and the W3C PROV Data Model® result from standardization efforts aimed at establishing a
reference provenance model. However, as recognized by part of the Database community, this strat-
egy prevents a uniform approach where the information about the provenance of data is intrinsic to
the schema rather than an external annotation. The approaches devoted to a conceptual analysis tend
to extend foundational ontologies with notions able to characterize the nature and the provenance of
data. Ontologies of observations and measurements mainly developed in the context of Geographical
Information Systems (Kuhn (2009); Probst (2008)) explicitly refer to observations and measurement
processes. A similar methodology guided the W3C Semantic Sensor Network Incubator group* in de-
veloping an OWL-2 ontology for describing sensors in terms of measurement processes, observations
and deployments (Janowicz and Compton (2010)). The focus here is on the nature of raw data. The
DataTop ontology, based on Batrancourt et al. (2010), and the Ontology for Biomedical Investigations,
see Brinkman et al. (2010), address the need for the description of biological and clinical investigations,
i.e., they are also concerned with the way raw data are elaborated.

Relying on the work done in Benevides and Masolo (2014), we follow this last kind of approaches
by introducing what we call states into the domain of quantification of a first-order theory and by pro-
viding them with a precise identity criterion. States may be seen as (ontological) facts or tropes that

"'We will use interchangeably the terms ‘observation’ and ‘datum’ to indicate both raw data (direct observations) and phe-
nomena (indirect observations).

2http ://openprovenance.org/

3http ://www.w3.org/TR/prov-overview/

‘http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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capture how the world is and are the truth-makers of propositions. This perspective is briefly discussed
in Section 6. Our main focus is, however, on (epistemological) observations. In this view, states describe
how the world appears, they support propositions and may be unreliable or conflictual. For instance, a
set of observations may violate some laws that are assumed to regulate the domain under consideration.
Kuhn (2009), Probst (2008), and Janowicz and Compton (2010) model the provenance of observations
by means of primitive relations that link the observations to the sensors that collected them, to the used
measurement procedures, etc. Differently, our primitive of data production (see Section 7.1) keeps track
of the observations used to produce (infer, estimate, etc.) more complex observations. In this way, both
the provenance of the basic measurements and the one of the results of data-analyses can be uniformly
represented. For instance, measurements may be seen as produced by an observation of an object being
connected in a certain way with a sensor together with an observation of the position of the perceiv-
able output of the sensor (see Section 7.2). Data production does not guarantee the correctness of the
underlying production process. It is then an additional potential source of unreliable or conflicting data.

To try to logically manage these conflicts—by relying, for instance, on the production-chains at the ori-
gin of indirect observations—Ilogical inconsistency must be avoided. We propose to separate the model
of the data—the theory 7T st presented in Section 3 and extended in Section 7—from the model of the
domain—the theory 7Tp presented in Section 4. 7, formalizes the laws that regulate the kinds of objects
taken into account and the way they are interconnected, but it does not directly refer to any specific
observation. Vice versa, Tsr collects all the available information on the data one disposes of, a sort of
repository of observation reports, but it does not consider the laws that regulate the domain. Section 7.3
sketches some strategies to import data from 7st into ABoxp and to deal with conflicting data. We shall
introduce a methodology inspired by voting theory and judgment aggregation List and Puppe (2009) to
pinpoint sources of data and to discuss a number of strategies to integrate them. These strategies rely on
(?) filtering processes that find (on the basis of the information available in 7gr) subsets of observations
that guarantee the consistency of 7p once the correspondent ABoxp-assertions are introduced; (i) revise
Tp to comply with the full set of observations in 7sr; or (iii) mix the two precedent strategies.

Before illustrating and discussing the technical details of our formal framework, in Section 2, we
clarify our assumptions about the nature of states and observations.

2. Some clarifications about states and observations

Our framework is based on the distinction between times, objects, and (simple) states. Intuitively,
times, are ordered atomic entities while objects—also called substances, endurants, or continuants—are
particulars that persist through time by being wholly present at every time they exist, e.g., tables, persons,
companies, customers, bits of stuff. A state corresponds to the exemplification of, or the classification
under, a property (relation) by one (several) object(s) considered at a given time. E.g., Luca’s being 2m
high now, Luca’s being enrolled in the University of Trento now. We leave open what is the exact nature
of both properties (relations) and states. In an ontological perspective, see Section 6, states can be seen
as real entities that are part of the world, e.g., facts, instantiations of universals (see Armstrong (1989))
by objects, or tropes (see Daly (1997); Maurin (2014)). In an epistemological perspective, see Section
7, states reduce to observations, i.e., empirical or cognitive classifications of objects under (qualitative
or quantitative) concepts (see Margolis and Laurence (1999)) that result from measurement, testing,
perceptive, cognitive, or analytical processes.

Despite their epistemological or cognitive nature, our observations do not depend on single observers,
they are not private sensations or qualia (as intended by Goodman (1951)). Our observations have a
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representational nature: by abstracting from the observers and from the observing acts, observations are
pieces of information that represent the world as being seen in a certain way or configuration. It folllows
that observations are not necessarily veridical, truthful, or consistent. On the one hand, observations
share some properties with propositions: (i) they are the objects of acts of statement making, perception,
or thinking; (if) they can be truthful or not, true or false, i.e., they are truth-bearers; and (iii) they abstract
from specific languages or agent’s minds. On the other hand, they are grounded on empirical practices,
cognition, perception, etc., i.e., they can be understood as the result of an abstraction process from
cognitive events of classification and categorization.

The classificatory nature of perception has been defended by Matthen (2005). Matthen insists on the
fact that sensory awareness has a propositional form, it classifies distal objects as exemplifying certain
properties, i.e., the “sensory systems are automatic sorting machines that come into direct contact with
environmental objects and sort them into classes according to how they should be treated for the purposes
of physical manipulation and investigation” (Matthen, 2005, p.8). Even though Matthen attributes to
sensory classification an utilitarian role (to survive and adapt to the environmental niche of the organism),
there is a strong commitment neither towards an epistemological view nor towards an ontological one.

In science, outside a purely positivist view, data are not always understood as observation-reports that
are the result of direct measurements even though extended by means of given devices.’ Data may be the
result of complex (mental or non-mental) elaborations. As said, Bogen and Woodward (1988) distinguish
data from phenomena: data are the result of direct observations while “[p]henomena are detected through
the use of data, but in most cases are not [directly] observable in any interesting sense of that term”
(Bogen and Woodward, 1988, p.306). According to Bogen and Woodward, scientific theories often refer
to phenomena, i.e., the procedures for data analysis, data reduction, and for handling measurement errors
play and important role in science. For instance, the claim that “lead melts at 327 degrees C” is based on
the calculation of the mean of various temperature-measurements, “there is no reason why any observed
reading must exactly coincide with this mean value” (Bogen and Woodward, 1988, p.308). Both direct
and indirect observations—i.e., observations produced starting from (explained or justified in terms of)
simpler ones—are explicitly taken into account in Sections 7.1 and 7.2, i.e., in terms of Bogen and
Woodward, we include among observations both phenomena and data.

Recently, Soames (2010; 2015) defended the idea of grounding propositions on cognitive acts. Ac-
cording to Soames, propositions are “repeatable, purely representational, cognitive act-types or oper-
ations” (Soames, 2015, p.16) and to entertain a proposition “is not to cognize it but to perform it’
(Soames, 2015, p.16). The idea is that agents cognize objects as being certain ways, they perform acts
of predicating properties of objects, of representing objects as having certain properties. According to
Soames, propositions are then act-types, i.e., specific properties that identify classes of events that have
in common the predicating of a property to an object. In this perspective, “[i]nstead of deriving the inten-
tionality of agents from independently representational propositions, we must explain the intentionality
of propositions in terms of the conceptually prior ability of agents to represent the world in thought and
perception” (Soames, 2015, p.14). Without entering the debate on the advantages and drawbacks of this
theory,® we want just to underline that, as far as we can understand, act-types exist even when they are
empty, i.e., even when the proposition is not entertained. While this makes sense in ontological terms, in
our epistemological perspective we assume the existence of an observation only when somebody com-
mits (through some act or operation) to the classification of an object under a property. The existence of

SWe do not consider here data like analogical images or records.
6See, for instance, King et al. (2014), Caplan (2016), Schiffer (2016), and Soames (2016).
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object a and property P seems to be enough to guarantee the existence of the act-type of predicating P to
a, but, in our framework, it is not enough to guarantee the existence of an observation. The set of obser-
vations is then a subset of the set of propositions, it roughly corresponds to the entertained propositions.
On the other hand, the set of observations is a superset of entertained true propositions. This means that
neither all observations are truthful, nor all the true-propositions are observed. This also implies that
our observations, but not the propositions of Soames, can be seen as the result of an abstraction process
from acts or operations. However, we explicitly represent neither the classificatory acts the observations
abstract from, nor the involved abstraction process. In addition, we assume the observations to be ac-
cessible without errors, i.e., to be shared by a community of agents. This sharing process, that can be
very complex and can involve (linguistic) interactions between agents, is not taken into account in our
framework. This does not prevent a future extension of the theory that explicitly addresses these aspects.

3. The formal framework of states

We have seen that our states (and observations) roughly correspond to entertained propositions. To
represent them we observe that the traditional structured conception of propositions introduced by Frege
and Russell sees propositions as decomposable into objects and properties (or relations), see King (2014)
for a review. More precisely, propositions are represented as ordered pairs with form ((x, ..., x,), R"),
where the x; are objects and R" is a relation of arity n.” Our states are submitted to identity criteria
similar to the ones of tuples. The main differences are: (i) the existential conditions of states are more
restrictive than the ones of pairs—e.g., given a and Crimson the pair {a, Crimson) exists, but without any
classificatory act the corresponding state does not exist; (ii) a state can represent the classification under
different properties—e.g., the state of a being Crimson is also a state of a being Red (see Section 3.2.3)
while there are two different pairs, namely (a, Crimson) and {a, Red).

Furthermore, the possibility for a proposition to have different truth-values at different times has been
deeply discussed in the philosophical literature, see Brogaard (2012) for a recent discussion. Temporal-
ism claims that the same proposition can change truth-value while eternalism assumes that time ‘is part’
of the proposition, every proposition is true or false simpliciter. In the perspective of structured proposi-
tions, eternalism includes time into the representation of the proposition, e.g., {({x1, ..., x,), R", ) while
for temporalism time is a sort of modality. We follow the eternalist view and we assume that ¢ refers
to the time at which the object has (is seen to have) the property,? i.e., t does not individuate when the
classificatory statement is made (even though this act must exist), but it freezes the object, it establishes
when the object is considered for the classification. However, an object can (be seen to) have the same
property at different times. Even though this complicates a bit our framework (see Section 3.2.3 and
Section 7.3), to minimize our commitment, we allow states to be linked to several times, i.e., they may
represent the fact that an object has (is seen to have) the same property at several times.

States are formalized in a first-order setting that extends and systematizes our work published in
Benevides and Masolo (2014) and Masolo (2016). Following the usual reification technique, for each
tuple ((ai,...,a,), R", t)—where the maximal arity of relations is assumed to be finite—we introduce
in the domain of quantification a state that (i) is linked to the a;s through different relations that aim
at capturing the role of the object a; in the relation R"; (ii) it is an instance of a unary predicate that

7 As observed by Schiffer (2016), this does not mean that propositions are ordered pairs, it just implies that a unique propo-
sition composed by (xp, ..., x,) and R" exists.
8In a four-dimensional perspective one would say that it is the remporal slice of the object at the time that has the property.
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corresponds to R", and (iii) it is present at t. However, as we will see in Section 3.2.3, our states do not
satisfy the standard existential and identity criteria for tuples.

We assume the following notational conventions: (i) the 1 (inverted iota) is a definite description oper-
ator a la Russell, i.e., Y(1x(¢(x))) is a schema for Ax(¢(x) A Vy(d(y) — y=x) A ¥(x)); (ii) predicates are
noted in uppercase typewriter type, e.g., PERSON; (iii) logical functions and definite descriptions are
noted in lowercase bold normal type, e.g., mother_of;’ (iv) individual constants are noted in lowercase
typewriter type, e.g., luca; (v) we write P,x instead of P(x, #) to highlight the time-argument #; (vi) x"
is a shortcut for xi, ..., x,; and, finally, (vii) the symbol £ is used to introduce syntactic shortcuts.

3.1. The theory of times and objects

We assume a very weak theory of time (TM) and objects (0B), a minimal commitment that allows us
to elaborate our theory on states. Times can be intended as punctual or extended atomic entities. Even
though it is not essential to our goal, one can think time as linear and discrete (we will not formally
take into account this aspect). Objects (continuants or endurants) may persist and change through time
by possibly having, or being classified under, different properties at different times, i.e., they are the
subjects of the temporally qualified predications.

The theory Ttmiop of times and objects we consider just assures that objects are disjoint from times
(al) but they necessarily exist at least at one time, where €,x stands for “x exists at time 1’, see (a2)
and (a3). A more realistic model would consider a set of object-kinds and some necessary relations
among them. However, the rules and laws that regulate a specific domain constitute a form of contextual
knowledge that cannot be easily generalized. Trym.o has to be considered as a very minimal theory
shared by both 7p and Tgsr that can be extended with more complex constraints without undermining the
work we will present below. Ttmios = TBoxtamios U ABoxtmyo is the first-order theory with (non-
logical) vocabulary V0B ={TM, OB, €} U CTm+0B, Where (i) Ctv-oB is a set of individual constants for
objects and times; (ii) TBoxtazios ={(al), (a2), (a3)}; and (iii) ABoxtm4o0B is a set of atomic and closed
Vrmros-formulas. Furthermore, syntactic definitions—to be intended as syntactic shortcuts—introduce
some useful notions, e.g., temporal inclusion (d1) and temporal overlap (d2).

al TMx — —0BX

a2 gx — TMf A = TMX

a3 oBx — dt(g;x)

dl x©.y = Vi(g;x — &) (temporal inclusion)
d2 x®,y = dt(g;x A gy) (temporal overlap)

3.2. The theory of states

We specify our theory of states Tsr by extending Ttam.op With additional primitives and constraints.
(Simple) states (ST) are disjoint from objects and times (a4) and, like objects, they exist in time (a5).

a4 STx — (—OBX A —TMX)
a5 sTx — dt(g;x)

9In FOL, functions are total, so a function such as mother_of can be applied to every entity in the domain of quantification.
Due to this aspect, we favor definite descriptions instead of functions.
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Note that the existence of a state at a time represents the fact that an object is classified under a property
depending on how the object is (seen) at that time, i.e., (according to some observers) the object has the
property at that time (similarly for relations). Suppose that somebody, on the basis of a 1:1 photo taken
at time ¢, measures, at time ¢’, the height of an object a to be 1m. In this case, the state of ‘a being 1m
high’ exists at time #, not at the time ¢’ (when the measurement is done). Change can be represented by
classifying objects, at different times, under incompatible properties.'® Properties are here considered as
static, they provide a reference system that allows diachronic comparisons. Still objects can be classified
under the same property for several times (before changing), i.e., states may exist at different times.

3.2.1. The basic components of states

We have seen that the ontological and the epistemological views disagree on the nature of properties
(universals vs. concepts) and of the classification relation (instantiation vs. classification). Despite that,
they share the idea that the objects and the properties (relations) are the main components of states.

States are covered (see Section 3.2.2) by a finite set P of unary predicates''—to be added to the vo-
cabulary Vst of Tst—that represent the kinds of states chosen by the user, i.e., intuitively, they collect
all the states corresponding to the classification of an object (several objects) under the same property
(relation). The atemporal primitives —o; hold between objects and states (a6) and have the role of iden-
tifying the ith object involved in the state, the ith participant (a7). We assume that the properties and
relations predicated of objects, that correspond to state-kinds, have the maximal arity «. This coincides
with the number of the —o; primitives that are necessary to distinguish the position (the role) the objects
have in the relations. (d3) defines n-ary participation while the general participation abstracts from the
position (role) (d4).!? The participation relations as well as the P-predicates are not temporally quali-
fied, i.e., both the participants and the property are constants components of states, states cannot vary
their participants or migrate from a kind to a different one. The (temporal) necessity of participants is
represented by (a8), where the temporal inclusion & is defined in (d1).

d3 x"—os = A1_ (xi =5 8) A AL, ~Ix(x—o5 5) (n-ary participation)
d4 x—os=\/{_ x—o;s (general participation)
a6 x—o; s — OBX A STs

a7 x—o0; S ANy—o0;8 > x=y

a8 x—o;5 > 5 X

Some illustrative examples: (i) the ‘Luca’s being enrolled in the University of Trento now’ may be
represented by (f1); (if) a ‘change’ in the properties of an object requires at least two states, e.g., (f2);
(iii) the same object can be characterized by several synchronous states, e.g., (f3).

f1 luca—o; s Aunitn—o,s A ENROLLS A €pouS
f2 luca—o; s A luca—o; s’ A 80KGs A 82KGS’ A e¢S A eps’ At#t’
3 luca—o; s A luca—o; s’ A 80KGs A 180CMs’ A g;S A €S’

10A5 discussed by Haslanger (2003) the temporal qualification of property instantiation is only a possible solution of the
problem of representing change, a solution required if one assumes that properties do not change and that objects survive
changes and are the direct subject of properties. Alternative solutions are possible if one assumes perdurantism, see Sider
(2001). In this case one can read ‘a is P at ¢’ as ‘a-at-t is P’, i.e., the subject of the property P is the temporal slice of a at ¢.

1We represent the state-kinds by means of predicates with a bar, the motivation will be clear later. Note that ST ¢ P.

12By having properties and relations in the domain of quantification we could add them to the participants. To avoid the
technical problem of property-reification, e.g., manage the instantiation relation as a new primitive, we prefer here to represent
them by means of predicates.
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First, (iii) shows that states only partially characterize their participants. In general a state regards only
a specific aspect of the participants, e.g., the weight of Luca. Second, one could add, for instance,
€yesterdayS 1N (f1). The possibility for a state to exist at multiple times motivates the distinction between
existence and participation, see (a7).'? Third, even though states may exist at different times, they always
correspond to (synchronous) classifications of objects at every single time at which they exist, i.e., they
concern properties that can be attributed only by examining the objects under observation during a single
time. More complex states could refer to the history of the participants, to the way their properties vary
through time. We will not consider this interesting aspect.

3.2.2. Taxonomical structure of state-kinds

The user may organize the predicates in P by providing a taxonomy like the one depicted in Figure
1, where a vertical line between a bottom P and a top Q stands for “P is directly properly subsumed
by Q”.'* As a meta-condition, we assume that the provided taxonomy has no cycles, i.e., there are no
necessarily co-extensive predicates in P. The idea is that every state needs to be classified under at least
one state-kind in P. In an empirical setting, this kind is not necessarily a leaf of the taxonomy. For
instance, not all the measurement devices have the same resolution, one can imagine devices able to
distinguish green objects from red ones but not olive objects from emerald ones, thus, one could have
green states that are neither olive nor emerald. This is the main role of the taxonomy that is intended to
represent the different resolutions of the observations or, in an ontological perspective, a genus-species
or determinate-determinables relation, see Sanford (2014).1

We assume that the user specifies a state taxonomy via a finite set of SUB-statements, where SUB(Q, P)
represents that Q is directly properly subsumed by P. For each SUB(Q, P) statement we add the axiom
Vx(Qx — Px) into the TBox of Tt (noted TBoxsr). As said before, TBoxsr contains only these tax-
onomical axioms. To facilitate the formalization of 7gr, we introduce the following subsets of P that,
to be determined, need a simple (pre-)processing of the provided SUB-statements (where SUB™ is the
transitive closure of SUB):

— Pr={PeP | there are no Qe P such that SUB(Q, P)}; (leaves of P)
— Pr={PeP | there are no Qe P such that SUB(P, Q)}; (roots of P)
— ANC(P)={QeP | suB*(P,Q)}. (ancestors of PeP)

In Figure 1, P, = {GLUED, ROUND, SQUARE, CRIMSON, OLIVE, EMERALD}, Pr = {PHYSICAL, CONNECTED),
and ANC(RED) = {COLORED, PHYSICAL}. Note that two different leaf-predicates can share instances (but,
trivially, no subpredicate). This means that P is not necessarily closed under the logical conjunction.
Similarly for disjunction and negation. For instance, assume SUB(P, Q). Nothing assures the existence
of the complement of P with respect to Q; in particular, P can be the only predicate subsumed by Q. It is
also possible to have two different predicates with a single and shared subpredicate.

(a9) guarantees that all the states of the same root-kind have the same ‘arity’, i.e., they necessarily
have the same number n > 0 of participants (where n can be different for different roots). This constraint
(partially) characterizes the fact that the state-kinds correspond to properties or relations predicated of

13 Alternatively one can introduce mereological sums of times, called periods, and assume that all states are linked to just one
period, the maximal period at which they exist. The first approach is more parsimonious and it explicitly treats times differently
from the other arguments of the relation.

14The fact that PHYSTCAL and CONNECTED are subsumed by ST is directly captured by including PHYSICAL and CONNECTED
in P, the dot-line in the Figure 1 represents this situation.

I5Taxonomies are a basic way of organizing states-kinds. More sophisticated, topological or geometrical, methods can be
considered like in the framework of conceptual spaces, see Gérdenfors (2000).
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'''''' ST .
CONNECTED PHYSTCAL
| e ™~
GLUED SHAPED COLORED
e P N
ROUND  SQUARE RED YEILOW  GREEN

| 7

CRIMSON OLIVE EMERALD

Fig. 1. Example of taxonomical organization of the predicates in P.

objects and not to generalizations on states, i.e., pure properties of states. For instance, in Figure 1,
PHYSICAL does not stand for ‘being a physical state’ (that would also include CONNECTED-states), but it
individuates all the states that correspond to the predication of the property ‘having a physical quality’,
like COLORED corresponds to the property ‘having a color quality’.

a9 Npep, (Ps — Ax'(x" —o))

Given the possibility to have multi-resolutions systems, we require the user to explicitly specify the
resolution of states by assigning to each state s its minimal kind (al0), i.e., the kind P such that s is an
instance only of P and of the ancestors of P (d5). This trivially assures that states are covered by the
state-kinds in P. In addition, it guarantees that the theory is able to claim if a state is or is not an instance
of any PeP, i.e., the theory is complete with respect to the belonging of states to state-kinds. This is
in line with both an ontological and empirical view of states. In the second case, one always knows the
resolution of the used device, there are no grey areas of knowledge concerning this aspect. Note that the
minimal kind must be unique, a multiple minimal kind would trivially generate an inconsistency.

d5 min(s,P) £ Ps A Aggance)(—Qs)
al0 sTs — \/p.p(min(s,P))

3.2.3. Individuation of states
The classical identity criterion for pairs with form ({ay,...,a,), R") may be captured by (f4) where
(d6) defines when two states have the same participants.

dé s>as’ = A\ Vx(x—o; 5 & x—0; ') (same participants)
4 \/5.p(Ps APS) A sas’ — 5=+

However, (f4) seems too strong for at least two reasons. First, consider the taxonomy in Figure 1 and as-
sume a—o; s A a—o, s’ AROUNDs A OLIVEs’ A s ®, s". The states s and s’ have the same participants,
different leaf-kinds, but a common ancestor, namely PHYSICAL. Because of that, (f4) would entail
s = s even though s and s’ regard two different aspects of a. Second, (f4), as well as the majority
of philosophical discussions, do not consider the temporal dimension of states. For instance, assume
a—o15 A a—o; s’ AROUNDs A ROUNDs’ but g;5 A £,5" At # t'. Again (f4) would entail s = s’ even though
t and ¢’ are two disjoint times, i.e., it requires the existence of a unique ROUND-state relative to a, what
would allow for intermittent states.
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Regarding the first problem one needs to better qualify what are the predicates in P that provide
the identity criterion for states. The minimal kinds of states are a straightforward possibility: (f4) can
then be replaced with (f5). The rationale behind this identity criterion is that, given the resolution one
disposes of, it is not possible to have different states with the same content. E.g., it is not possible to
have two minimally GREEN-states with the same participant while it is possible to have a minimally
GREEN-state and a minimally EMERALD-state both about the same object. The difference resides in the
fact that they have a different resolution. For the second observation about time, we prefer here to weaken
(f5) allowing for temporal disjoint states with the same content (all), where the temporal overlap ®. is
defined in (d2).'® Because all states have a minimal kind, (all) applies to all the states, i.e., it is a true
identity criterion for states. By accepting (all) we can introduce the shortcut p,x” to denote the unique
state that is identified by the time ¢, the participants x" and the minimal kind P, see (d7). Note that states
existing at multiple times can be described in different ways. For instance, in the case of a yellow state
existing at both ¢ and ¢’ one has yellow,x=yellow, x.

5 \V/pep(min(s,P) Amin(s’,P)) A sas’ — s=5'
all /3. p(min(s,P) Amin(s’,P)) A s>4s’ A s ®, 8" — s='
d7 p,x" £as(min(s,P) A g5 A X" —o ), where n is the arity of P (state description)

3.2.4. Complex states

The category of complex states (cST) is the closure of (simple) states under mereological sum. We
introduce a primitive parthood relation on cST—x C y stands for “x is part of y”—on the basis of which
one can define the classical mereological notions of proper part (d8), overlap (d9), sum (d10), atom
(d11), and atomic part (d12). Sometimes we write x+y to refer to the z such that zXxy. The parthood
relation satisfies the axioms for a classical atomic extensional mereology closed under the mereological
sum: parthood holds only between complex states (al2), it implies temporal inclusion (al3), it is reflex-
ive (al4), antisymmetric (al5), transitive (al6), and atomic (al7), it satisfies the strong supplementation
principle (al8), and it is closed under sum (al9). In this theory, complex states are uniquely decompos-
able into atoms, see Casati and Varzi (1999). (a20) enforces states and mereological atoms to coincide,
thus complex states are uniquely decomposable into simple ones.!”

d8 xCyZ=xCyAx#y (proper part)
d9 x)y=3dzzExAzZEY) (overlap)
d10 xZy" = VYwwix o Wiy, V- Vwiy,)) (sum)
d11 Ax = csTx A =Ay(yC x) (atom)
d12 xACy = AxAxCy (atomic part)

al2 xCy — cSTx A CSTy

al3 xCy — x©.y

ald xCx

alS xCyAyCx—>x=Yy

ale xCyAyCz— xCz

al7 dy(yAE x)

al8 —xCy — dz(zC x A —z(y)

16Stronger constraints can be added to, for instance, enforce the convexity of states.

17Complex states correspond to conjunctions of classifications under simple properties not to classifications under complex
properties. For instance, one could distinguish p;(a)+q;(a)—a conjunction of classifications—from [pAq];(a)—a classification
under a conjunction of properties, see Masolo and Porello (2016).
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al9 csSTx A csTy — ds(sZxy)
a20 Ax < STx

With a slight abuse of notation, (d13) extends the existence € to complex states. A complex state e
is completely existent at t, €e, if all its (atomic) parts exist at ¢ (d14). At a time ¢, the participants in a
complex state are the participants in its atomic parts that exist at # (d15) (where x —o s is defined in (d4)).
Again with a slight abuse of notation, (d16) just abstracts from time. Hence, the participants in the part
participate also in the whole. In the following, we will often use the term ‘state’ to indicate both simple
and complex states. In addition, seeing states as facts, these complex states are quite similar to what
Galton (2005) call eventualities.

d13 g,e = dAs(spAC e A g,5)
dl4 g.e
d15 x—,e = As(spCe A x =5 A g5)
d16 x—e = dt(x—os A gS)

3.2.5. The theory Tst
We are now in the condition of precisely defining our theory of states:

II>

Vs(sAC e — €;5)

— Vst=Vrm+oB U {ST, ST, —01,...,—0,,C} U PuU Cst
where Cgr is a set of individual constants for simple and complex states, and
— Tsr=Tt™Ms0B U TBoxst U ABoxgt, where
TBoxgst ={(a4), (a5), (ab), (a7), (a8), (a9), (al0), (all), (al2), (al3), (al7), (al8), (al9), (a20)} U
{all the material implications that correspond to SUB-statements}
and ABoxgr is a set of atomic and closed Vsp-formulas that concern at least one symbol in
Vst\VIm+0B-

3.2.6. A short comparison

States vs. tuples. First, states but not tuples are linked with times. Second, states are only par-
tially identified by their participants: states of different kinds but with the same participants are pos-
sible, i.e., x*—os A x"—s’ AP1s AP2s’ A s # 5" is consistent. Consider now the tuples with form
(ay,...,ay), R", ty discussed in Section 2 in the context of the representation of propositions. First, if
t # ¢, then ay,...,a,), R", t) is necessarily different from ({a1, ..., a,), R",t’). Differently, states may
exist at different times. Second, a state with minimal kind P is an instance also of all the state-kinds in
ANC(P). Vice versa, if R # S, then ({ai, ..., a,),R", 1) is different from ({ai, ..., a,),S", t). Third, given
n objects ay, . .., ay, an n-ary relation R", and a time ¢, the tuple ({(ay, ..., a,), R",t) always exists while
the state exists only when the objects ay, ..., a, are (appear to be) in the relation R" at r.

States vs. Kim’s events. Intuitively our states satisfy the Kim’s existence condition for events: “event
[x, P, 1] exists just in case substance x has property P at time ”, see Kim (1976).'® However, the Kim’s
identity condition—"“[x, P,t] = [y, Q,¢] justin case x =y, P = Q, and ¢ = ¢ does not hold in general
for our states. First, our states can be linked with several times. Second, the same state can have several
(leaf- or non leaf-) kinds. For instance, when SUB*(CRIMSON, RED), CRIMSONs A REDs is consistent.
What distinguishes Kim’s events from the tuples with form ({(ay, ..., a,), R", t) is the existence condition.

18While Kim’s properties are in the domain of quantification, we represent them through P-predicates.
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States vs. RTLs’ fluents or states. In reified temporal logics (RTLs), e.g., the situation calculus (see
Reiter (2001)) or the event calculus (see Mueller (2000)), fluents and states are represented as total
functions applied to objects, e.g., respectively, tired(john) and tired(john, r). States were introduced to
account for the criticisms originally raised in Galton (1991) regarding the fact that fluents are reifica-
tions of types instead of tokens. States are then represented as total functions where at least one of the
arguments is a time point or an interval. These total functions correspond to (some of) our state-kinds.
In RTLs, the totality guarantees that the existence of 1uca entails the one of tired(luca, r) for each time
t. Vice versa, in our framework, the existence of luca and the inclusion of the predicate TIRED in P
implies the existence neither of a TIRED-state with the participant luca, nor, more generally, of a state
involving luca. Again RTLs’ states seem closer to reifications of propositions than to facts or observa-
tions. This claim is supported by the fact that RTLs’ states are in the domain of quantification even if
they do not hold; e.g., the state tired(luca, ¢) is in the domain of quantification even though we have
—HOLDS(tired(luca, 1)).'"> Actually, for every time and object in the domain, there will be a tired-state
independently of its holding. This seems to contradict the Kim’s existence condition.

States vs. DB-tables vs. Neo-Davidsonian states. In Section 3.2.1 we have seen that time is not con-
sidered as a participant (—o) of a state mainly because states may be e-linked with several times. One
could apply this abstraction process also to participation. More strongly, one could replace the —o; and €
primitives with a single (several) participation relation(s) PC that does not satisfy the critical constraints
(a7), (a9), and (al1). In this case the number of participants of states of a given kind is not explicitly rep-
resented in the model.?’ This move is close to the one followed by some Neo-Davidsonian approaches
that, similarly to what done for events, introduce (optional) thematic roles (e.g., subject and object) also
for states (see, for instance, Parsons (1990) and Landman (2000)). An intermediate position consists in
establishing a maximal arity for each state-kind. This is particularly interesting in the case of databases
where a table with fixed columns could have some empty cells, i.e., one has partial information. Halpin
and Morgan (2008) analyze the case of optional roles in the context of students that score a rate for a
given subject, claiming that in this way “it is possible to record the fact that a person enrolls in a subject
before knowing what rating the student gets for that subject” (Halpin and Morgan, 2008, p.708), i.e.,
nesting®! with optional roles (instead of mandatory ones) allows to encode partial information, tables
with incomplete entries. The notion of partial reification introduced in Olivé (2007) is quite similar to
nesting with optional roles, i.e., the user is free to establish if the roles are mandatory or optional.

This is a flexible approach to represent partial information. However, first, it really complicates the
establishment of an identity criterion for states (and events), as proved by all the failed attempts of pro-
viding a clear identity criterion for events in the Davidsonian approaches. Second, from a data-centric
viewpoint, it is difficult to understand what a partial or incomplete datum is. One can have partial in-
formation about an object a. For instance, one knows the color of @ (at a given time) but not its shape,
or one knows that a is red without knowing the exact shade of color. Similarly, while in ENROLL,xy,
where x is a person and y is a subject, the score is unknown, in ENROLL,xyz the score z is explicitly taken

194OLDS(fx", £) means that the fluent £ holds (is true) at . Concerning states, as the state-function f has already a temporal
argument, there is no need to temporally qualify HOLDS, e.g., HOLDS(tired(luca, )). Some approaches consider a time interval
or a pair of time points as arguments of HOLDS, see Vila and Reichgelt (1996).

200ne could also distinguish mandatory from optional participants.

2INesting is a mechanism to reduce, for instance, a ternary relation where a student scores a rate for a given subject to a
binary enrolling relation defined between students and subjects with a mandatory rating role.
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into account. However, according to us, ENROLL,xy and ENROLL,xyz, or RED,x and SCARLET,x, are all
full-fledge data even though they have a different resolution or precision.??

States vs. individual qualities and relators. The individual qualities in the poLCE ontology (see Masolo
et al. (2003)) are more abstract than our states. For instance, ‘the color of the rose r’, the individual
quality c, specific to r, can change from scarlet to crimson, i.e., it survives movements in the color-
space. Colors are here in the domain of quantification and the fact that r changes from scarlet to crimson
is represented by the shift from the scarlet position of c, to the crimson one in the color-space. In our
framework, individual qualities can be seen as complex states, i.e., similarly to classical trope theory,
change reduces to state (relative to the same object and dimension) substitution.

Guarino and Guizzardi (2015) extend the idea of individual qualities to time-varying relationships
that are represented as relators, i.e., entities constituted by relational qualities that have some time-
varying attributes, e.g., the attribute ‘credits’ for the enrollment of a student in an university. Again, we
could modify our framework to consider optional participants but, from a data-centric perspective, this
seems a worthless complication. For instance, the change of the score relative to a course-subject may
be represented as in (f6) by relying on two different states (with the same person and course but different
scores, namely 7; and r,) where no optional participants are involved. Relationships with time-varying
arguments can again be reconstructed through complex states, i.e., by summing up states that share some
participants (i.e., same person and course in the previous example).

f6 ENROLLs; A luca—o; s; Amath—o,5; A 1y —o351 A &, 51A
ENROLLs, A luca—o; 5o Amath—o, 5, A rp 0385 A €, 52

4. The model of the domain of interest

We introduce the theory 7p, which models (the rules regulating) the domain of interest. Technically, Tp
extends Trm:op With a finite set P of temporally qualified (contingent) predicates that apply to objects,
i.e., P-atomic formulas have the form P.c", where P € P has arity n+1, t is an individual constant of
kind ™™, and the c; are individual constants of kind 0B such that they are in the relation & with t (a21).%3

a2l Apcp(P X" — OBX] A €X] A ... AOBX, A EXy,) (where n+1 is the arity of P)

The predicates P € P are temporally contingent in the sense that P,x A g,x A t # t' — Py x does not nec-
essarily hold. Kinds like ‘being a person’ or ‘being an electron’ are then excluded from P. If needed,
these kinds can be introduced in Ttym.op (Without any temporal argument).24 Tp typically contains the
terminological axioms (the TBoxp) that characterize the way the predicates in P are interlinked. Sim-
ilarly to the case of states, we assume that the P-predicates are taxonomically structured by the user
via a finite set of SUB(P, Q) statements that are translated into axioms with form P,x" — Q;x" where

22Note that, intuitively, ENROLL,xyz — ENROLL,xy. However this generalization is not captured by the SUB relation.

23See Varzi (2003) for a discussion about modal alternatives to represent the temporal qualification of propositions.

24Some philosophers support the idea that the truth-makers of kinds are their instances. For example, for Armstrong (1997),
the truth-makers of ‘being a person’ are the persons themselves. However, if necessary, our framework can be easily adapted
to accept temporally necessary predicates in 7p. In addition, e¢ P because finding the counterpart of existential propositions
in terms of states would cause an infinite regress (in their turn, existence-states exist) that is unmanageable in a standard
representational setting. Indeed, the existence of truth-makers of existential propositions has also been debated in philosophy.
Armstrong (2004) himself claims that it is a mistake to recognize states of affairs with the form “a’s existence”, because this
will turn existence into a property of a.
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both P and Q have arity n+1. Again, these SUB-statements are intended to represent generalization or
determinable/determinate links, e.g., the link between SCARLET and RED. Theoretical or empirical laws
(or causal correlations) have a different nature. For instance, to capture the situation where, in a given
domain, all the round-objects are necessarily red, one can introduce the axiom ROUND,x — RED,x into
TBoxp, but this is not a pure taxonomical statement representable by means of SUB*.%

We will see that, in a scientific perspective, it is interesting to distinguish the initial ABoxp—
intuitively, the set of data directly grounded on experimental outputs, let us say—from its deductive
closure under 7p—the data that can be inferred from the experimental data by using the theoretical or
empirical laws and that, in their turn, need to be experimentally evaluated. This distinction allows to
highlight discrepancies between the theory and the experimental data one disposes of.

The theory Tp of temporally qualified predicates is defined as in the following:

- Vb = Vrm:oB U P
i.e., there are no new individual constants;

— Tp = TtmsoB U TBoxp U ABoxp, where
TBoxp is a set of axioms that link the predicates in P (and, eventually, with the predicates for
kinds of objects in Y1z o) including (a21) and the axioms that correspond to SUB-statements,
and ABoxp is a set of atomic and closed P-formulas (7p does not introduce additional Vrv.0B-
assertions).

Note that 7p does not introduce any new (kind of) object with respect to 7rm-.os- This seems to go
against the assumption, largely shared among philosophers of science, that theories may refer to non
directly observable entities, e.g., electrons, bosons, etc.?

Vice versa, some (kinds of) observable objects could not be directly considered by theories. In partic-
ular, some raw data used to produce complex data about theoretical entities can be hidden at the level
of the theory. This shows that, in principle, the objects involved in 7p and the ones involved in TgT may
properly overlap. However, in Section 5, we will see that our framework does not assume a sharp bound-
ary between theoretical and experimental objects and laws. Some empirical laws can be represented at
the level of Tp while some theoretical laws can be partially captured at the level of 7gr by the primitive
of data production. We prefer then to have a unique vocabulary for objects without clearly distinguishing
directly observable objects from indirectly observable ones. Indeed, both 7sr and 7p can involve only a
subclass of the objects in Ttym.0B, i.€., it is possible to have objects that do not participate in any state
in 77 or that are not the subject of any predication in 7p.

5. Linking models with states

We analyze some relations between the model of the domain, the theory 7p, and the model of data,
the theory 7gr. The link between theories and observations has been deeply debated in philosophy of
science. The so called Syntactic View, mainly developed by Carnap (1956), conceives scientific theories
as set of sentences in predicate logic with the (non-logical) vocabulary partitioned into theoretical and

251n an empirical perspective, round-data and red-data are collected in completely different ways and with different instru-
ments. Vice versa, scarlet-data are just classified also as red-data without any additional empirical activity.

26Events or changes are interesting cases of entities that are not synchronously observable: to observe a change one needs
at least two diachronic observations. The existence of a change (and its properties) is then grounded on patterns of diachronic
observations. One could also undertake a radical position where all the objects are only indirectly observable, i.e., their existence
is determined on the basis of patterns of observations, see Bottazzi et al. (2012).
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observational terms. Empirical laws regulate observations, they help “to explain a fact that has been ob-
served and to predict a fact not yet observed” (Carnap, 1966, p.229), while theoretical laws have a sort of
hypothetical role, they help “to explain empirical laws already formulated, and to permit the derivation
of new empirical laws” (Carnap, 1966, p.229). Theoretical terms are connected with observational terms
via correspondence rules, e.g., as illustrated by Carnap: “If there is an electromagnetic oscillation of a
specified frequency, then there is a visible greenish-blue color of a certain hue”. Only the existence of
correspondence rules allows to derive empirical laws that, in their turn, allow to empirically evaluate
theoretical laws. In this perspective, there is not necessarily a realistic stance on theories. Theories can
be seen as “language tools for organizing the observational phenomena of experience into some sort
of pattern that will function efficiently in predicting new observables. The theoretical terms are conve-
nient symbols. The postulates containing them are adopted because they are useful, not because they
are “true”” (Carnap, 1966, p.254). The Semantic View, mainly developed by Suppes (2002) and van
Fraassen (1989), criticizes logical empiricists principally for the linguistic nature of scientific theories.
The Semantic View refuses the use of predicate logic and commits to set-theory, it describes both theo-
ries and observations as classes of mathematical structures that abstract from the formal language used
to reconstruct them. Theories and observations are then linked by means of embeddings that play the
role of the correspondence rules of Carnap.

Without entering this complex debate,?’ our first-order framework is quite close to the Syntactic View
but some important differences exist. First, the Syntactic View assumes a sharp separation between theo-
retical and empirical (observational) terms and laws that, in their turn, are distinct from correspondence
rules. To address the possibility to have partial information about the data that may be produced through
disparate kinds of processes or collected by heterogeneous sources, we do not assume this sharp separa-
tion. Both the axioms in 7p and the data production links in 7gr (see Section 7.1) may represent empiri-
cal, theoretical, experimental laws, or correspondence rules. In addition, to simplify the framework, we
assume the link between Tgr-observations and ABoxp-assertions to be direct, i.e., the imported ABoxp-
assertions just mirror a (possibly produced) observation (see below and Section 7 for the formalization).

This does not mean that our framework is incompatible with the Syntactic View. For instance, one may
assume that 7p contains the theoretical laws, Tgt contains the empirical laws, while the correspondence
rules are represented by data production chains (in 7gr) together with direct links between (produced)
observations and ABoxp-assertions. Second, in the Syntactic View, the data and the laws must be con-
sistent. Vice versa, 7gr is intended to collect all the available information about the data even when they
conflict with some empirical or theoretical law. This is a challenging scenario that however allows to
investigate some techniques to solve these conflicts on the ground of the reliability of data and laws,
avoiding then to discard the whole set of data, see Section 7.3 for a preliminary analysis.

In Section 5.1 we analyze how the propositions in ABoxp can be grounded in (supported by) the states
in Tgr, i.e., we start from the theory 7p and we study what atomic propositions have a corresponding
state in 7st. In Section 5.2 we take into account the reverse link, i.e., we start from the states in g and
we study what states are covered by Tp, what states have an assertional counterpart in 7p.

We have seen that 7p and 7st may use partially overlapping sets of individual constants for objects
(introduced in 7Ttmz:oB). They could also consider predicates that do not have a direct correspondence.
For instance, (i) 7p may talk of specific relations between electrons that could be nonobservable (in

27The interested readear can refer to Lutz (2015) for a recent overview. Note that, as showed by Lutz (2014), the syntactic
and the semantic methods are not in opposition, they represent two perspectives on theories that can co-exist and can support
each other. In particular, it seems that an improved version of the Syntactic View is somewhat more general than the Semantic
View, see Halvorson (2013) and Lutz (2015).



16 Masolo et al. / The interplay between models and observations

the sense of Carnap); (i) the concept of density may be introduced in 7p while only volume-states and
mass-states are present in Tgr; (iif) TsT may consider some state-kinds (and objects) that are not relevant
for the domain of interest of 7p; or (iv) 7p and Tgt may have different resolutions, for instance, the
available devices could not resolve all the properties considered in 7p, or, vice versa, Tp could abstract
from some detailed observations.

The example (iv) about resolution allows us to clarify what we intend with direct correspondence.
Assume RED € P and CRIMSON € P. Intuitively, the association of RED with CRIMSON makes sense for
the grounding but not for the covering: RED-propositions are supported by CRIMSON-states, but CRIMSON-
states are not covered by RED-propositions because RED-propositions could be grounded in SCARLET-
states. Dually, RED-states are intuitively covered by CRIMSON-propositions, but CRIMSON-propositions
are not grounded in (too general) RED-states. To capture this asymmetry, two different mappings are
required: one for groundedness from P to PP and one—that, in general, is not the inverse mapping—for
covering from P to P. Here we are interested in studying the groundedness of 7p and the covering of
Tst once a unique correspondence between predicates has been established, i.e., we want to know if a
given correspondence guarantees both the groundedness and the covering. We then require that the user
provides (i) the subsets of predicates P*C P and P*C P with a direct correspondent together with (ii)
a SUB*-preserving?® bijection y : P* — P*, i.e., ¥ is as one-to-one relation between the predicates in
P* and the ones in P* such that SUB*(y(P),¥(Q)) if and only if SUB*(P, Q). The predicate associated
with PeP* is noted PeP*, i.e., P=y(P). At the end, we assume that the user provides as input the tuple
(To, P*, Tst. P*, v) on the basis of which groundedness and covering can be studied.

The correspondence is direct in the sense that the grounding of P-propositions depends on the exis-
tence of P-states (see Section 5.1) and the covering of P-states depends on the presence of P-propositions
(see Section 5.2). However, on the one hand, states may encapsulate or explicitly capture—via the
data production primitive—dependencies on other states. This allows to ground ABoxp-assertions on
states produced (by someone) through (not necessarily truthful) cognitive or mathematical operations.
On the other hand, sometimes, the assumed bijection requires an explicit representation of an abstrac-
tion process. Consider the previous example of theories with different resolution. Intuitively, neither
¥(RED) = CRIMSON nor y(CRIMSON)=RED make sense because, in the first case, CRIMSON-states are not
covered by RED-propositions and, in the second case, CRIMSON-propositions are not grounded in RED-
states. To represent the fact that ‘being red’ is coarser than ‘being crimson’, the user needs to add a pred-
icate and a SUB-assertion: in the first case, it is enough to introduce RED € P* and SUB(CRIMSON, RED);
in the second case, RED € P* and SUB(CRIMSON, RED). The claim y(RED) =RED establishes a direct cor-
respondence that maintains the previous intuitions about groundedness and covering: RED-propositions
are still grounded in CRIMSON-states—because CRIMSON-states are RED-states—and RED-states are still
covered by CRIMSON-propositions—because CRIMSON-propositions are RED-propositions—but not the
vice versa—not all the RED-states (RED-propositions) are CRIMSON-states (CRIMSON-propositions).

Finally, note that the deductive closure of 7p and 7t could introduce new propositions in the ABoxes
of, respectively, 7p and Tst whose groundedness and covering is not always assured by the groundedness
and covering of the initial ABoxes (ABoxp and ABoxgr). We will illustrate the importance of this
distinction in the following. For the moment it is important to clarify that we understand theories as
usually done in knowledge representation. While logicians usually reduce a theory to a set of sentences
in a given language, in knowledge representation a theory is usually intended as a set of axioms (in a
given language) explicitly introduced by the developer, i.e., there is a distinction between the theory, the

28Remember that SUB™ is the transitive closure of SUB.
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set of axioms, and its deductive closure, the set of formulas deducible from these axioms. Our theories
(our ABoxes and TBoxes) always refer to the lists of propositions introduced by the user and not to their
deductive closure.

5.1. Groundedness

The general idea is that the proposition P,c” € ABoxp is grounded on a P-state that exists at time t and
has participants c”. Consider the tuple (7p, P*, Tst, P*, ) provided by the user. Definition 1 introduces
the notion of (simple) groundedness for a subset of the P*-propositions in ABoxp. We say that 7p is
simply grounded on 7gr if and only if the set of all the P*-propositions in ABoxp—i.e., the set of all the
propositions that involve predicates on which vy is defined—is grounded in 7gr.

Definition 1. (Simple Groundedness) A C ABoxp of P*-propositions is (simply) grounded in Tgr if and
only if for every P.c" € A there exists a s € Csyt such that Tst + PS A g¢s A c" —os.

Definition 1 considers the deductive closure of ABoxsr, i.€., the taxonomical structure of states is used.
This implies that the same state can ground several propositions. Consider the taxonomy in Figure 1. The
state crimsonc can ground both CRIMSON,c and RED,c because SUB(CRIMSON, RED). Furthermore, a
proposition may have several grounding states. Consider, for instance, crimson.c and red.c. These two
states are different (see (d7) and (all)) but both of them ground RED;c. An ontological perspective on
states could motivate a criticism about the grounding of propositions on multiple facts, the idea that a
proposition has multiple truth-makers. Vice versa, in an epistemological context, the previous example
captures the situation where one disposes of two data, with different resolution, both supporting RED; c.
Note that if CRIMSON,c € A the SUB"-preserving assumption on the correspondence y avoids clashes
among the taxonomical information in 75 and the one in Tgr.

Definition 2 introduces the notion of strong groundedness that assures that all the P*-propositions one
can infer in 7p (more precisely, in 7p \ ABoxp) from the propositions in A are grounded (where c/(X)
identifies the deductive closure of the set of formulas X). We say that 7p is strongly grounded in g if
the set of all the P*-propositions in ABoxp is strongly grounded in 7gr.

Definition 2. (Strong Groundedness) A C ABoxp of P*-propositions is strongly grounded in Tgr if and
only if the set of P*-propositions in cl(Ttmro U TBoxp U A) is simply grounded in Tgr.

Consider the previous example of correlation, and assume that ROUND,x — RED;x is in TBoxp
(and neither SUB*(ROUND, RED) nor SUB*(ROUND, RED)). Assume now that ROUND,c € ABoxp and that
ROUND € P*. If RED ¢ P*, both simple and strong groundedness do not guarantee the existence of red-
states, the user just ignored evidences for RED-propositions.?’ If RED € P*, according to strong ground-
edness, both a ROUND-state and a RED-state must be found in ABoxgr even though RED.c ¢ ABoxp.
According to simple groundedness, if RED.c ¢ ABoxp, a ROUND-state would be enough, i.e., it is possi-
ble that no RED-state relative to c at t exists. While this is not acceptable in ontological terms, it is quite
usual in an empirical perspective where we have only partial experimental measurements concerning c
at t. Strong groundedness requires all the inferred RED-propositions to be grounded, while for simple
groundedness only the RED-proposition in ABoxp must be grounded.

29Actually Tst could contain red states, it is the user that did not introduce any link between RED and RED.
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Note that when both ROUND and RED belong to P*, in Tgr the correlation ROUND,x — RED,x could
be captured by the strong (generic) existential dependence SED(ROUND, RED), where SED is defined in
(d17). In a data-centric perspective, SED-relations can be intended as integrity constraints, i.e., a way to
check if our data are logically consistent. Note that SED(ROUND, RED) can be satisfied by the existence
of several states, e.g., by the presence, in addition to round.c, of crimson.c, red.c, or both of them.
One could also assume that the user, as in the case of SUB, introduces SED-relations to be used to close
or complete the data, i.e., to add new (indirect) states into Vsr. In this case, starting from round.c,
SED(ROUND, RED) only introduces red;c, one has no information about the exact shade of red of c.*

d17 SED(P, Q) 2 Vix"(As(Ps A €5 A xX"—o5) — ArQr A g, A X"—o7F))

Notice that SUB™ is a specific case of SED where s and r coincide. Hence, material implications between
object-properties may be grounded on different types of existential dependence between the correspond-
ing state-kinds.>' As said, here we consider only SUB-relations between state-kinds. The production of
data is represented only via the data production primitive defined on individual states (not on state-kinds,
i.e., it captures punctual dependencies not general ones) or by correlation rules in TBoxp. Section 7.3
takes into account data production dependencies to weaken the notions of groundedness and covering.

5.2. Covering

In the previous section we considered the assertions in 7p that are supported by (the existence of)
states in Tgt. Here we take into account the opposite direction, i.e., how and when the states in 7gt have
a correspondent assertion in 7. We have already seen that the (and only the) P*-predicates have an
unique correspondent P*-predicate, i.e., y~!(P) = P. The definitions of covering we propose are then a
sort of dual of the ones of groundedness.

Definition 3 introduces the notion of (simple) covering for a set A of P*-states in Tgy. We say that
Tp simply covers Tgr if A is the set of all the Pr-states in Tsr. Like grounding, the same state can be
covered by different propositions and the same proposition can cover different states. Strong covering,
see Definition 4, requires the covering proposition to belong to ABoxp.

Definition 3. (Simple Covering) ‘Tp simply covers the set A C Cst of P*-states in Tsr if and only if for
every s € A, t,c" € Crm+oB, P € P* such that Tsy + Ps A exs A c" —os then Tp + Pic.

Definition 4. (Strong Covering) Tp strongly covers the set A C Cst of P*-states in Tsr if and only if for
every s € A, t,c" € Crm+0B, P € P* such that Tst + Ps A €¢s A ¢" —o's then P.c" € ABoxp.

Note that the notions of covering and groundedness are independent, i.e., covering does not rule out
the possibility to have ungrounded P-propositions in (the deductive closure of) ABoxp.

In a scientific scenario, one would like to import as much data as possible into 7p, i.e., to populate
ABoxp by assuring that 7p strongly covers 7st and 7Tp is simply grounded in 7gr. In this case, all the
P*-states in ABoxgy have at least a correspondent ABoxp-assertion, and all the ABoxp-assertions have
at least a supporting state. Strong groundedness guarantees that all the propositions in the deductive
closure of ABoxp have a supporting state, i.e., there exist empirical evidences of everything 7p can

infer from the initial ABox. Vice versa, in the case of simple groundedness, some propositions inferred

30 Actually, this is another reason to allow for the existence of states of non leaf-kinds.
3 Implications with form —=P,x" — Q;x" are more problematic because it is not clear what guarantees the existence of Q-states.
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from the initial data could lack an empirical support. However, even in this weaker scenario, since the
states are not necessarily truthful, the importing of states could end up in a logically inconsistent 7p.
In order to maintain the grounding of 7p on data by preserving its consistency, one can consider (i) to
avoid to import some states, i.e., states need to be filtered, aggregated, or harmonized before transferring
them into ABoxp; (ii) to revise the theory 7p to comply with the whole set of data; or (iif) a mix of
harmonization of data and revision of the theory. Section 7.3 takes into account some of these general
scenarios in the case of (weak) measurement.

6. States as facts or tropes

We briefly make precise a realist (ontological) view where states are entities that exist in the world
like facts or holding states of affairs, see Armstrong (1997), or (relational) tropes, see Daly (1997) and
Maurin (2014). In the following we will talk about facts, but everything holds also for tropes.

In this realist view, states are always completely determined and never disputable. The complete deter-
mination of facts can be partially characterized by adding to 7st the axioms (a22) and (a23) that assure
states to be partitioned by leaf-state-kinds, i.e., the theory of facts Trc =Tst U {(a22), (a23)}. It follows
that the identity criterion for states has the form (t1), i.e., for every P e P, (P; is the set of leaves of P,
see Section 3.2.2) we have a unique fact s such that Ps A g,5 A X" —o s (noted p,x"). With reference to
the taxonomy in Figure 1, this move implies, for example, that RED is equivalent to CRIMSON, OLIVE is
equivalent to YELLOW, while SHAPED is equivalent to the disjunction of ROUND and SQUARE.

a22 STs = \/pcp, Ps
a23 /\PiQE'P_L(ISS - —|QS)
tl Vpep.(Ps) A sHs' As® s’ — s=5

Because facts are part of the world they cannot be wrong, the set of facts is an indisputable reference
for any theory. If, once imported into 7p, some facts generate an inconsistency then only a revision of
Tp makes sense. However, note that neither 7p is necessarily grounded on facts, nor facts are necessarily
covered by 7p. In the first case, Trc represents only a subset of the whole facts. In the second case, Tp
focuses just on some aspects of the world, on some specific domains of interest. In addition, 7p may be
partially underdeterminate with respect to the world. For instance, RED € P* may be a leaf in 7p while,
in Trc, RED may subsume some leaves, e.g., SCARLET and CRIMSON.

In this realist perspective, one could think that the perfect matching between theory and facts occurs
when (i) 7p is strongly grounded in Tgc and (ii) Tp strongly covers Trc. Still the (P \ P*)-propositions
are not necessarily grounded in Tgc, even though, in some cases, they are deducible from grounded P*-
propositions. In addition to the conditions (i) and (ii) one could then add that P*=7P, i.e., 7Tp and Tgc
are strictly aligned. The facts may then be seen as the truth-makers of P-propositions, what exists in the
world that makes P-propositions true. Armstrong (1997) assumes ((x exists) indicates the proposition
‘that x exists’ and p entails ¢ if and only if there is no possible world where p holds but g fails):

(A) “If a proposition p is true then there exists an entity x such that (x exists) entails p.” (Armstrong,
1997, p.115).

Slightly differently, Rodriguez-Pereyra (2005) considers:

(TM) “Necessarily, if (p) is true, then there is some entity in virtue of which it is true,”
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i.e., “if a proposition is true there must be an entity that would not have existed if the proposition
in question had been false” (Rodriguez-Pereyra, 2005, p.19). Without entering this debate,’? we just
highlight that truthmaking has an explicative power: the truth of p is explained in terms of the existence
of the truth-maker x, p is true in virtue of x. This explicative aspect is only partially captured by our
framework, which represents a simple correspondence between true propositions and facts.

7. States as observations

In this section we focus on a cognitive or empirical interpretation of states, we talk of simple and
complex observations rather than states. In Section 2 we have seen that observations represent both
direct classifications like sensations or simple measurements, and classifications resulting from high-
level cognitive or empirical processes like reasoning, testing, reporting, etc. These processes rely on
simple observations to build explicit, concise, meaningful, and cognitively effective classifications. For
instance, in data analysis, one starts from raw data to build indicators that can be further elaborated. In
metrology, one can represent the way data are collected, their origin or provenance, the involved devices
or observers, etc.

One possible way to capture this generative aspect is to consider all the observations in 7gr as raw
and perform all the elaborations at the level of 7p by introducing some axioms that represent the needed
data-aggregation rules. This strategy is perfectly acceptable but it has at least two issues. First, the theory
T would mix the realm of data (analysis) and the one of the laws that are supposed to govern the world,
the realm of the empirical practice and the realm of purely theoretical knowledge. Second, and more
importantly, this strategy would imply that (i) for all the complex data taken into account, the way they
are calculated and the raw data from which they are produced are explicitly represented in 7p;** and
(if) no wrongly-produced complex data exist, every complex datum is perfectly well defined and all the
elaborations are free of mistakes. We prefer to follow a weaker approach that lacks the explanatory power
of this ideal approach but is able to manage partial information about the origin (the provenance) of
complex data. Rather than representing sow complex data are produced, we just introduce a mechanism
(namely, the data production relation introduced in the next section) to keep track of the data on which
they depend, of the data that has been used to produce them. This seems a more realistic position in a
scenario where data are made available by different sources without necessarily a complete information
on the way they have been achieved and where the possibility to have false data or wrong elaborations
is not negligible. This weak framework cannot be used to certify the (dis)alignment of the empirical or
experimental data with the theoretical framework under test. However, as we will see in Section 7.3, it
allows to address some simple kinds of mismatches between 7p and Tsr.

7.1. The primitive of data production

Data production—or, simply, production—is a (cognitive) process that induces a simple observation
to emerge from a (possibly) complex one: x <, s stands for “at time #, the simple observation s is directly
produced starting from the (complex) observation x” (a24). We consider here only direct production,
i.e., productions with no intermediate steps (a25), the basic blocks for building production-chains, see

32The interested reader can refer to Beebee and Dodd (2005) for a deep discussion.
33This also impacts the required expressive power of the logic behind 7p, given the fact that often the indicators are the result
of complex statistical analysis, etc.



Masolo et al. / The interplay between models and observations 21

Section 7.3. Data production is a sort of (temporally qualified) specific dependence. In particular, here
we focus on a synchronic dependence, i.e., both the ‘producer’ and the ‘product’ must completely exist
when a production relation holds (a26). Productions that contemplate temporal patterns of diachronic
observations, forms of historical dependence, are not considered in this work.

a24 x<;y — CSTx A STy A T™M?
a25 x<,y > —=dz(x<,2 A 2<4y)
a26 x<,y = Ex A gy

Logically, x<;, s can be seen as a form of inference, a dependence of the information contained in s
on the one in x. However, our production primitive is not necessarily truth-preserving, it just allows to
take track of the data advocated for the introduction of a new datum. Neither the truth of the starting
data nor the validity of the elaboration of these data are guaranteed, e.g., one can encounter faulty
productions. To check the validity of a given data production and then to filter out incorrect production-
statements, additional information is required. Note that we represent neither who or what performs the
data analysis nor the way the raw data are elaborated. These are interesting extensions of our framework
whose usefulness will be briefly discussed in Section 7.3.

The temporal qualification of the production-primitive is necessary because observations can ex-
ist at several times, therefore, the data that produce them can change through time, i.e., (f7) does
not hold in our framework (even in the case €.x). For instance, the weight of an object o can be
measured at several times by using different devices even when the weight of o does not change.
Second, even at a single time, an observation can rely on different raw data. For instance, both
r:(x, d)+p,(d)<;9.109 x 10~3'kg,(x) and 1.602 x 10~1?coulomb,(x)<,9.109 x 10~3'kg,(x) are possible.
In the first case the mass of an electron x is determined by observing a P-configuration of the scale d
when R-connected to x, while, in the second case, by applying a physical law. Third, there are obser-
vations, called primitive observations or raw data, that are not produced. Primitive observations supply
a starting point to production-chains. Intuitively, they include phenomenological conscious sensations,
simple readings of the outputs of the technical devices by the operators, or, simple measurements (in the
Carnap sense previously discussed). However, in our framework, they are observations that have been
endorsed by someone (not explicitly represented in the theory) without providing any information about
their origin. Fourth, one is tempted to assume that if x<:,y holds then, at any time x completely exists, x
continues to be linked with y by the production-primitive (f8). We do not commit to this view because
the holding of the production-relation has to be intended as an explicit statement resulting from under-
lying cognitive processes. The production x <,y represents an explicit commitment to the fact that, at ¢,
y has been produced starting from x. Both x and y could exist at ¢ without any production-relationship
(at t') between them, without any explicit elaboration of (the observations that compose) x to obtain y.

f7 x<yANepy — x<py
f8 x<, YA E&rx > x<py

Note that the production-primitive could also represent ontological information. Consider, for in-
stance, p;(x)<,q,(x). At least two readings are possible: (i) we are in presence of an ontological cor-
relation, e.g., all the objects with mass 9.109 x 1073'kg have an electric charge of 1.602 x 107!°
coulomb, or (ii) we are in presence of a generalization, e.g., all the scarlet objects are red. Consider
now (inheres;(x, g)+p:(q))<:p:(x). Here, g can be seen as an individual quality or trope that inheres in
x. The classification of x under P depends on the classification of its trope under P, e.g., x appears red
because a red-trope inheres in it.
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Our theory of data production 7Tpg is then an extension of 7gr such that:

— Vpr = VsT U {=<}, and

— Tpr = Tst U {(a24), (a25), (a26)} U ABoxpr U TBoxpr
where ABoxpg and TBoxpr extend, respectively, ABoxgsr and TBoxgt with statements that involve
the primitive <- of direct production.

7.2. Weak measurement

We focus here on one special kind of data production called evaluation that has the form in (f9) where
q:(x) is produced from (i) a relational observation concerning both x and m and (ii) a classification of m.
The observation p,(m) is a sort of proxy for q,(x), i.e., m is a mediator able to transduce, by R-interacting
with x, a property of x into a property of m. By connecting the object x to the mediator m in a qualified
way, some observations about x can be indirectly obtained by observing m. Measurements may be seen
as specific evaluations, e.g., the weight of x is obtained by observing that x is on the plate of the scale m
and by observing the position of the pointer of m.

19 (r:(x, m)+p,(m)) < q:(x) (evaluation)
d18 of's = \pep(Jxsisa(x—o0 s A s1=1(x,m) A 52=p,(m) A $1+52<;5)) (source)
For evaluations, the source relation o can be defined as in (d18)%*: o/"s stands for “at time #, m is a
source or origin of the observation s”. The source m coincides with the mediator, what or who interacted
with the participant of s during the evaluative process. When the mediator is a person we talk of pure
evaluation, opinion, sensation, expertise, etc. Note that some observations may have several sources
that can be further characterized by information about its kind, its reliability, etc., see Janowicz and
Compton (2010). We do not consider this additional information that, however, can be easily integrated
in our framework.

As said before, the production primitive does not guarantee the validity of the production process. The
theory of measurement allows to introduce some constraints to rule out material errors in the data pro-
duction. More specifically, here we focus on the case of qualitative evaluations, a perspective explicitly
addressed by the theory of weak measurement introduced by Finkelstein (2003) and further elaborated
by Mari (2013). In this weak perspective, measurement does not necessarily involve quantities (interval
or ratio properties) but also qualities (nominal or ordinal properties). Qualitative classification plays a
fundamental role in disciplines like psychology, medicine, or sociology where non-physical properties
can be attributed to the subjects via the administration of tests. Measurement becomes “uncorrelated
with quantification: the measurability of a property is a feature derived from experiment, not algebraic
constraints” (Mari, 2013, p.2894). The basic formula of the quality calculus is p={p}in [p] where: (i) p
is a property of an object (e.g., the color or the shape of an object); (ii) [p] is a classification system, a
system of properties all related to the same quality (e.g., the color-properties); and (iii) {p} is an element
of [p], it individuates the position of the object under measurement in the system [p] (e.g., scarlet for
colors), see Mari and Giordani (2012) for more details.’® (Weak) measurement commits to individual
properties or tropes of objects. The value {p} is attributed to an individual property of the object under
measurement, e.g., it is the color of the object that is scarlet. The object is (indirectly) scarlet just because

34P is the set of functions that is in a one-to-one correspondence with the set of state kinds 7.
35Usually, the classification systems are structured. The domains of conceptual spaces (see Girdenfors (2000)) and the
quality spaces of DOLCE-CORE (see Borgo and Masolo (2009)) can then be seen as classification systems.
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its color is scarlet (see the end of Section 7.1). However, as shown in Masolo (2010), by explicitly taking
into account the measurement devices, one can avoid this commitment and consider measurement as a
(partial) mapping from objects to properties in the system [p]. Given the fact that the evaluation form
(f9) explicitly refers to the mediators, here we embrace this less committed approach.

According to Mari (2013), the distinction between measurement and evaluation is based on the ob-
Jectivity and inter-subjectivity of the results: measurements must be sharable by different subjects at
different times and in different places. To achieve this, measurement relies on measurement standards
and calibration. A device transduces the interaction with an object into an internal state (of the device
connected to the object) that is empirically accessible via the pointer. Calibration provides a meaning to
the positions of the pointers. Once a physical or theoretical measurement standard isomorphic to [p] is
established, calibration—see Masolo (2010) and Frigerio et al. (2009) for details—establishes a one-to-
one correspondence between the positions of the pointers and the properties in [p], i.e., the positions of
the pointers stand for properties, the device physically embodies the classification system.

Let us analyze the conditions evaluations must satisfy to be classified as measurements. First, the me-
diators must be measurement devices, i.e., objects with the design characteristics previously discussed.
Here we do not explicitly consider these characteristics, we simply introduce a finite number of kinds
of stable and calibrated devices all subsumed by 0oB. Each kind of devices is characterized in terms of
(i) the possible positions of the pointers, and (ii) the possible ways an object can be connected to the
devices. Given a device-kind D, we assume that D C P characterizes the configurations (of the pointers)
of the devices while RD C P specifies how the input objects must be connected to the devices.

Second, we need to represent the classification system [p]. To account for the possibility to clas-
sify objects at different resolutions, we allow [p] to contain multi-resolution properties, i.e., the
properties in [p] can be taxonomically structured. In our framework, a multi-resolution system can
be represented by a taxonomically structured & C P. For instance, in Figure 1, one can consider
S = {COLORED, RED, CRIMSON, YELLOW, OLIVE, GREEN, EMERALD} that contains predicates at different
levels of resolution, e.g., COLORED, RED, and CRIMSON. Taxonomically unstructured flat systems can
also be considered, e.g., S = {CRIMSON, OLIVE, EMERALD).

Third, to represent calibration, we need to individuate the properties in S the observation-kinds in
D stand for. We need then an embedding of D into S. This embedding represents the calibration of
D-devices with respect to the system S, i.e., we explicitly represent neither the calibration process nor
the measurement standard that allows for the calibration. Given a device-kind D, P € D, R € RD, and a
classification system & the device refer to, calibration constraints have the form in (f10) where Q € S.

£10 (Dm A (r,(x, m)+p,(m))<;s A x—o5) — Qs

Once the calibration constraints are available, it becomes trivial to filter out the evaluations that are
not measurements. If the observations r;(x, m) and p,(m) are not primitive, the calibration and filtering
process can be applied also to them. Vice versa, the checking of the correctness of pure evaluations—
e.g., when the mediator is a person, group, or institution—could involve social or historical behaviors of
the mediator that are very difficult to be analyzed and represented.

Let us extend Trm+oB With n device kinds D; (such that D;x — 0Bx) and a set of individual constants
for devices. In this way the theories 7st and Tpr contain individual constants and predicates also for
states that concern devices. The theory Tys of (weak) measurement is defined as in the following:

— Vms = VR
— Tus = Tpr U TBoxys, where
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TBoxys is a set of axioms with form (f10) that refer to m measurement standards S i C P, n sets
D; C P (one for each device-kind) that characterize the configurations of the D;-devices, and n sets
RD; € P that specify how the input objects must be connected to the D;-devices.

7.3. Linking models with measurements

We have seen that the calibration constraints help in discovering material mistakes. Consider now
two devices d; and d, of kind D1 and D2, both calibrated with the classification system S. Furthermore,
assume that the object x is correctly connected to d; by R1 € RD; and to d» by R2 € RD, and that
the calibration constraints are satisfied. In the situation represented in (f11), all these conditions do
not guarantee the identity of ql1,(x) and q2,(x), it is still possible to have two different synchronous
measurements of x both relative to S.

f11 (rL,(x, d)+p1,(d1) < q1,(x) A (124(x, d2)+p2,(d2)) < q2,(x)

This difference can be due to the resolution of the devices, e.g., q1,(x) = crimson,(x) and ¢2,(x) =red,(x),
or to the kind of receptors the devices are equipped with. For instance, in Figure 1, OLIVE is subsumed
by both YELLOW and GREEN, therefore q1,(x) = yellow,(x) and q2,(x) = green,(x) can be justified by the
lack of information about the exact shade of x: d; classifies an olive shade as yellow, while d, as green.
Disagreements like q1,(x) = olive,(x) and q2,(x) = crimson,(x) are less easy to be justified because,
intuitively, being olive and being crimson are incompatible properties, no calibrated devices should, in
principle, produce these results. However, in the scientific and ordinary practice, sometimes devices are
used in a wrong way, in extreme environmental conditions, or they are just malfunctioning. Thus, an
epistemological approach cannot exclude the previous kind of conflictual observations.

Our framework does not contain disjointness constraints that concern the leaves of the P-taxonomy,
therefore, for instance, the existence of both olive,(c) and crimson.(c) in ABoxys does not generate a
logical inconsistency. This is a prerequisite to allow 7Ty to contain observations that may produce incon-
sistencies when provided by a domain theory. To represent the fact that being olive and being crimson
are, in a given theoretical (or ontological) perspective, incompatible properties, one needs to constrain
the predicates OLIVE and CRIMSON. If ABoxp (simply or strongly) covers Tys and OLIVE, CRIMSON € P*
then, in the previous example, both OLIVE.c and CRIMSON.c are in ABoxp. Therefore, by adding
OLIVE,x —» —CRIMSON,x into TBoxp, 7p becomes inconsistent. To avoid the inconsistency one can (i)
filter and clean ABoxys, i.e., identify the most plausible observations among a set of (possibly) contra-
dictory ones, and assure ABoxp covers only the filtered ABoxys: (ii) revise Tp to comply with the full
set of observations in Tyg; or (iif) mix the two precedent strategies.37

One first possibility is to follow a brute procedure: start from ABoxp that simply covers and it is
strongly grounded in 7ys and check if 7p is consistent. If it is consistent we are done. Otherwise start
to randomly avoid to cover some observations and recheck if the new 7Tp is consistent. After some

36 Alternatively one could import only states that have sources and contextualize all the ABoxp-assertions to their sources,
i.e., the propositions that correspond to observations have the form P;Ix and correspond in 7p to As(Ps A 0;15 A x—os). At this
point the inconsistency is present only when the same source has contrasting outputs. The disagreement between sources can
then be resolved at the level of Tp by introducing specific axioms that aggregate source-dependent propositions into source-
independent ones. This would mean that (i) a subset of the ABoxp has an epistemological nature, it reflects the point of view of
the devices on the world; (ii) that the source-independent propositions do not correspond to any observation; and (iii) that the
empirical and theoretical levels are mixed up.

37By decoupling ABoxps from ABoxp, i.e., observations from true P-propositions, we shift towards a verificationist ap-
proach to truth: propositions must be verifiable, they are true only if they are verified, and truth “is constrained by our abilities
to verify, and is thus constrained by our epistemic situation” Glanzberg (2014).
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iterations one could identify a subset of states that can be safely imported into 7p. Alternatively, one can
start to delete some axioms from 7p and recheck if the new theory is consistent with the import of all the
observations. A procedure that deletes both axioms and observations is also possible. These procedures
are clearly inappropriate both from a theoretical and a computational perspective.

Let us focus on procedures that filter observations. One can try to follow a sort of divide and conquer
strategy. Rather than trying to find a maximal set of states that are consistent with TBoxp>® one could
try to individuate n subsets Sy,...,S, of P*-states such that Si,...,S, contains, but not necessarily
partitions, all the P*-states in Tys. Let us define 7; = Trmsos U TBoxp U ABox}, where ABox}, is
the ABox that covers and is strongly grounded in S;. If all the theories T; are consistent, the standard
hypothesis of the framework of judgment aggregation, cf. List and Puppe (2009), are met, and one can
rely on aggregation techniques—Ilike the ones analyzed in Porello and Endriss (2014)—to check and
possibly solve potential inconsistencies and find a single integrated theory. If some 7; is inconsistent,
it is necessary to apply a recursion step to S; (and 7;). The attempt is to divide the consistency check
by focusing on more simple and manageable sets of observations. However, we have the problem of
identifying the sets S; of observations.

Porello and Endriss (2014) assume the T,...,T, as given. However, they conceive ontology aggre-
gation (explicitly distinguished from ontology merging and integration) in the context of the theory of
judgement aggregation: each ontology is seen as a voter, as an individual judgment about the truth of
a list of propositions, and the goal is to aggregate the single views into a collective one.*® In Tys, a
measurement can be defined as a state s for which there exist a time  and a device d such that os where
d represents the voter. Given a finite number of devices dy,...,d,, M; is the set of P*-observations
with source d; (at least at one time of their existence). The set M; of measurements offers a sort of
agent-oriented perspective on observations where each device individually contributes to the whole in-
formation about the world, each device accesses and investigates the world in a peculiar way.

With data aggregation we refer to the aggregation of measurements taken by different devices. The
theories T; are then built on the basis of the sets M; following what we have done with the S;. The
case of measurements is however more complex. In Porello and Endriss (2014), an ontology is a fi-
nite set of (closed) formulas in a given language (namely, for the sake of example, the description
logic ALC) and an ABox is a finite set of propositions with form P(ay,...,a,). In our framework,
the ABoxp-propositions have an instantaneous temporal qualification, i.e., they have the form P,x". Vice
versa, the states in the sets M, are not necessarily linked to a single time and therefore they can change
their source(s) or, at some times, they can lack a source. It follows that, to say that the proposition
P.c"e€ ABoxp corresponds to an observation collected by the device d;, it is not enough to find a state
s € M, such that Tpr + Ps A e,s A c" —o's because d; could not be the source of s at t, i.e., s should
belong to M; because fos holds at t’# t. To guarantee that the propositions really correspond to ob-
servations collected by d;, we modify the notions of groundedness and covering by adding the condition
o%s as done in Definition 5 and in Definition 6.

38When we talk of consistency of a set of states with TBoxp we mean that, given the ABoxp that simply covers and it is
strongly grounded in this set of states, then 7p is consistent.

Porello and Endriss (2014) clarify some important differences between standard judgment aggregation and ontology ag-
gregation. Only in the latter case we have that: (i) the set of propositions considered by the individuals is not closed under
complementation, i.e., if a proposition p is available this does not imply also —p is available; (ii) an open world assumption is
necessary because agents cannot provide a judgment on each proposition about the world; and (ii7) in logical terms it is possible
to distinguish TBox-propositions from Abox-propositions and exploit this distinction in the aggregation of ontologies.
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Definition 5. (Strong M-Covering) ABoxp strongly M-covers M, if and only if for every s € M, every
t,c" € Crm40B, and every P € P* such that Tpr + Ofis APs A gcs A" —os then P.c" € ABoxp.

Definition 6. (Simple M-Groundedness) A set A € ABoxp of P*propositions is (simply) M-grounded
in M; if and only if for every P.c" € A there exists a s € M, such that Tpr + Og"s APs Ags AC'—os.

Now, as in the case of the S;, denote by ABoxk the set of P*-propositions that (i) are simply
M-grounded in M; and that (ii) strongly M-cover M,. Given a data set DS"={(Mi,..., M), we
can introduce <ABOX]13, ..., ABoxp,) and—using the terminology in Porello and Endriss (2014)—the
profile T"=(T1,...,T,) where T;=Trm+o08 U TBoxp U ABox},.*> This makes explicit in which sense
data aggregation can be seen as a specific case of ontology aggregation where all the ontologies
share Ttmios U TBoxp (and then the TBox) but they can have conflictual ABoxes. As said, in on-
tology aggregation, all the theories 7; are supposed to be consistent. By embracing this constraint, if
TrmroB U TBoxp is consistent, then the data collected by a single device need to be consistent, i.e.,
the problems arise only when we put together data with different provenance. The inconsistency of the
theory T;, assuming the TBoxyp, is a reference theory that is not under test or revision, would imply the
unreliability of the device d; and the consequent discarding of (part of) the measurements collected by
d;. In the following we explore only the simple case where the sets of measurements collected by single
devices that are inconsistent with TBoxp are totally discarded. This means that the previous devices
dy,...d, represent all the consistent (with respect to 7p) sources in 7ys.

Given these premises, we can follow ontology aggregation strategies to define and study differ-
ent aggregators, i.e., functions F that map a profile into a theory. The union aggregator F is de-
fined by F(7T")=T,U...UT, and it corresponds to an unfiltered import of all the measurements in
M=M;U...UM,. The unanimity aggregator F, is defined by F,(T7")=T;N...NT, and it pre-
serves the measurements unanimously collected by all the devices. The absolute majority aggregator
F,, collects in F,,(7™") all the measurements that are contained in more than n/2 T;-theories. One can
also adapt the properties of aggregators considered in Porello and Endriss (2014) to data aggregation:
anonymity (the aggregator is impartial with respect to the devices), neutrality (the aggregator is im-
partial with respect to the measurements), monotonicity (the aggregator is sensitive to increasing the
number of the devices that support a certain measurement), independence (the method of aggregation
is invariant in each profile), groundedness (the aggregated theory does not introduce new formulas, i.e.,
F(T™) C T, U...UT,), exhaustivity (the aggregated theory is maximal, i.e., for no profile 7" there ex-
ists a formulay € T; U... U T,\F(T") such that F(7") U {i/} is consistent). In particular, groundedness
and exhaustivity seem reasonable requirements for data aggregation (at least in the case the theories T;
can be modified only by deleting some axiom).

No one of these properties or aggregators guarantee the consistency of F(7"). Strategies to solve po-
tential inconsistencies must then be taken into account. Notice that the procedures analyzed in Porello
and Endriss (2014) are not intended to be directly usable in applications, they just “provide a catalogue
of basic aggregators that can serve as building blocks for constructing more sophisticated procedures
in the future” (Porello and Endriss, 2014, p.1241). In this perspective, the support-based procedure
seems especially interesting for data aggregation. The support-based procedure works by (1) ordering
measurements in terms of the number of devices that support them, and (2) by accepting formulas in
decreasing order, but dropping the formulas that introduce an inconsistency. This procedure basically

i

400ne could assume that the M);s contain also non P*-states. In this case the ABoxp,

maximal set of P-propositions grounded in M;.

can be introduced by considering the
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accepts measurements one after the other starting from the most supported one and guaranteeing the
consistency. Porello and Endriss (2014) show that this procedure is anonymous, monotone, grounded
and exhaustive—therefore it satisfies the requirements for data aggregation—but both neutrality and
independence are violated. The sequential procedure is a variation of the previous one that orders de-
vices according to, for instance, their reliability and then progressively includes into F(7™) the ABoxk,
relative to a device starting from the most reliable device and discarding devices whose measurements
would introduce an inconsistency with what is already in F(7"). In our framework the support-based
and sequential procedures may be modified to take into account the deductive closures. One starts by im-
porting, for instance, the ABoxi) relative to the most reliable device and consider c/(TBoxp U ABOX{)).
If the ABox of cl/(TBoxp U ABofo) contains new propositions (with respect to the starting ABoxf)), one
can assume that these data are reliable and then revise the ordering of devices taking into account the
sources of the measurements that ground the inferred ABox-assertions. In this case we are using both the
knowledge about the reliability of sources and the terminological one in TBoxp, to identify new reliable
sources. A similar mechanism can be exploited in the case of the support-based procedure: one can im-
port the most shared measurements and identify through the deductive closure new measurements to be
imported into the collective theory. As stated at the beginning of this section, all these procedures assure
that 7Trmsos U TBoxp C F(T"), i.e., they filter the measurements, the assertional knowledge, without
impacting the terminological one.

In Tus one may abstract from specific devices by considering the device-kinds D;. One can then group
the measurements that are collected by devices of the same kind, obtaining a new data set (M?, ..., M})
of the P*-states and a new profile (77,..., T,?). One can then use knowledge about the reliability of
the kinds of devices to apply support-based or sequential procedures. In this case, the hypothesis on
the consistency of the ontologies T}? would be quite critical because the malfunctioning of few de-
vices of a given kind would cause the discarding of all the ./\/l? data. One can then assume a two steps
procedure that divides again the problem in hopefully easier problems, i.e., instead of starting from
(M7,..., M}) one may consider the data set (Fy(T11,...,T1n),..., Fi(Tki, ..., Tky,)) where the pro-
files (Tj1, ..., Ti,) are determined by taking into account, as done before, the measurements collected
by all the n; devices of kind D;. The two steps aggregation is explicit because the output ontology is
F(F\(Ti,....Tw)s oo Fi(Tras - .o, Tiny))-

Another interesting modification relies on the use of the partial information represented by the data
production relation to extend the set of states imported into the theories 7;. Each set M; can be closed
under a production chain of a given length, a sort of ‘production closure’, the correspondent of the
deductive closure in terms of <. More formally, c/ % (M,) is the set of states that can be produced in at
most m-steps from M;-states:

- Clg.(Mi)=Mi;
— for n> 0, cl” (M,) is cl "<f1(/\/l,~) union all the states that are directly produced from complex

states whose atomic components are all in ¢/ '2_1(/\/1 i)

We can then mimic everything done in the case of (M,,..., M,) by considering the new data set
(el (My),...,cl ’Z (M,)) where m is the number of steps taken into account. Informally this means
that we consider not only the measurements directly collected by the devices but also all the observa-
tions explicitly produced from these measurements. This strategy could be further generalized by taking
into account observations produced by using measurements collected by different devices. Note that by
adding a parameter to the data production primitive, one could take track of who produced the data or
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of the method used. This extension allows to refine the previous analysis by individuating subsets of the
cl”, (M;) that contain observations produced by the same agent or by using the same method.

The information about the reliability of devices could be also used to modify TBoxp. For instance,
one could import all the observations taken by the most reliable device d; into ABoxp. If the resulting 7p
is inconsistent, instead of discarding the data collected by d;, one may delete some rules in TBoxp. The
previously discussed support-based and sequential procedures (and their modifications) can be easily
adapted to the case where the observations in 7gr are more reliable than the model 7p.

7.4. Data production as an observable

We briefly sketch the idea that the cognitive production processes underlying the relation <, can be,
in their turn, observed, i.e., we introduce observations about the way observations are produced in terms
of other observations. The data production relation must then be moved from the ‘ontological’ to the
‘epistemological’ realm, i.e., the primitive relation <- must be replaced by a new kind of observations.
We then extend P with the new PROD-kind that have two participants: prod,(s, s’) is the observation
about the fact that, at time ¢, the simple observation s’ is directly produced by the complex observation
s. Because PROD-observations are about observations, (a6) must be modified to allow observations to
participate (in the sense of the primitives —o;) in observations. The definition of provenance (d18) needs
to be modified as in (d19). We can then replicate what done in Section 7.3 by just considering (d19).

d19 of"s =\ pep(Ixs15253(x—0 5 A 51=1:(x, m) A 55=p,(m) A s3=prod,(s;+52, 5)))

It is then possible to talk about the provenance inside Tys, i.€., one could have observations about the
plausibility of a state s that are produced by taking into account the way s has been produced.

8. Conclusion

The development of suitable foundational theories about the interplay between theoretical models
and empirical observations is an important step towards the definition of precise semantics and sound
methodological principles for analytical investigations, where the reproducibility of analyses and exper-
iments is of major importance. From an engineering point of view, there is a need for a formal repre-
sentation of the activity of empirical research, in a suitable level of abstraction. A step in this direction
is offered by the present work that is founded on two main distinctive features. First, observations are
introduced into the domain of quantification of a first-order theory that precisely describes their nature
and their organization and takes track (by means of the data production primitive) of the way they are
experimentally acquired or intentionally elaborated. In this way, the observations and their provenance
are uniformly represented in a single formal framework rather than as external meta annotations. Sec-
ond, the proposed framework is based on the decoupling between the model of the domain of interest,
which mainly represents the theoretical knowledge or hypotheses on the domain, and the model of the
observations, which mainly represents the empirical knowledge and the given experimental practices. In
this way, clean theoretical models and chaotic sets of observations with heterogeneous provenance can
coexist making possible to formally manage the conflicts between theoretical and empirical knowledge.
In particular, we explored the possibility to solve inconsistencies between a given set of observations and
the assumed theoretical hypotheses by exploiting some techniques developed in the field of social choice
theory and judgment aggregation. These solutions, which may rely on the information provided by the
data-production primitive, may impact both the observations—e.g., the theoretical knowledge and the
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analysis of the way observations are collected or produced may highlight some unreliable sources—and
the model of the domain—e.g., empirical evidences may invalidate some theoretical laws.

There are at least three main directions to be pursued for extending the present work. First, the cover-
age of our framework could be broadened (i) by including data productions that contemplate temporal
patterns of diachronic observations, in order to deal with historical dependence; and (ii) by extending
our theory with observations about events and processes, what requires an ontological analysis on the
nature of events, a task we already sketched in Benevides and Masolo (2014). Second, one could explore
the possibility to develop aggregation techniques specifically based on the information provided by data
production. Even though this direction is quite interesting and promising, still it is necessary to better
understand how to use the information about who produced a new observation and the method used.
Third, the communities dealing with huge amounts of empirical data are also interested in reasoning on
this data in an effective and efficient way. One can then explore alternative ways of formalizing the pro-
posed framework, for example using description logics, that deal with different aspects of the trade-off
between expressivity and computability/tractability.
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