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Abstract. We propose a logic to reason about data collected by a num-
ber of measurement systems. The semantic of this logic is grounded on
the epistemic theory of measurement that gives a central role to measure-
ment devices and calibration. In this perspective, the lack of evidences (in
the available data) for the truth or falsehood of a proposition requires
the introduction of a third truth-value (the undetermined). Moreover,
the data collected by a given source are here represented by means of
a possible world, which provide a contextual view on the objects in the
domain. We approach (possibly) conflicting data coming from different
sources in a social choice theoretic fashion: we investigate viable opera-
tors to aggregate data and we represent them in our logic by means of
suitable (minimal) modal operators.
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1 Introduction

The need for grounding rational beliefs, for understanding what supports the
epistemic states of agents, is vastly acknowledged. Grounding is particularly rel-
evant for scientific claims that are usually justified in terms of observations and of
empirical data. In this context, data cannot be private, they must be shared and
trusted by different subjects at different times and in different places. According
to [15], the objectivity and the inter-subjectivity of the scientific results distin-
guish measurement from evaluation. Objectivity concerns the independence of
the measurements of a given property (of a measurand) of other properties,
measuring devices, and environmental conditions. Inter-subjectivity regards the
sharing of measurements and it is achieved by establishing measurement stan-
dards and calibration procedures for devices. Measurement theories play then a
central role for the collection and the sharing of trusted data, a pre-requisite for
grounding empirical science. Our aim is to develop a logic that explicitly rep-
resents how propositions connect to empirical data by exploiting the epistemic
measurement theory (EMT) introduced in [9, 11, 15, 16].

Epistemic logics [26] and evidence logics [3] have already considered the
grounding of epistemic states. Evidences for beliefs are encoded as sets of (or,
in neighborhood semantics, as families of sets of) possible worlds that, in these
logics, reduce in fact to plain and unstructured indexes.



By contrast, in our proposal, possible worlds are structured entities that ex-
plain the contextual nature of epistemic measurements. Possible worlds, called
here states, are then characterised in terms of EMT. A world provides a group
of datasets, i.e., a set of data (about the objects in the domain) collected by bat-
teries of measurement systems. Intuitively, a world gathers the (possibly partial)
information about the objects in the domain supplied by a given source. The
truth of a proposition at a certain state is then contextual because it depends
on the data collected by the source, i.e., on the measurement systems available
at that source and on the performed measurements. As we shall see, the par-
tiality of data forces the use of a three-valued semantics. A given dataset may
not contain enough information to establish neither the truth nor the falsity of
a proposition. A third truth-value, the undetermined (or unknown) is required.
The interpretation of the undetermined value that we endorse here is close to
the one introduced by Kleene [13] to represent the situation where an algorithm
does not terminate yielding a ‘true’ or ‘false’ output.

Ideally, objectivity and inter-subjectivity guarantee that all the data collected
by calibrated devices are consistent and sharable without errors. However, in a
realistic scenario, measurement devices may be used in unsuitable environmen-
tal conditions or following wrong procedures. They may also malfunction or lose
calibration during their life (typically, devices are not re-calibrated at every use).
These issues may especially be present in (i) large-scale and distributed collabo-
rative science, that often relies on (user-generated) data which are collected, for
instance, through sensors in mobile and ubiquitous devices; and (ii) scientific
endeavour that relies on tests, e.g. neuropsychological, clinical or behavioural,
where the scores of the tests are the result of very complex procedures that ag-
gregate heterogeneous measurements. Because of these complications, conflicting
datasets may exist, i.e., the sources of data may disagree.

To approach conflicting sources, we extend our logic with modal operators
inspired by social choice theory and judgment aggregation [14]. These operators
represent different strategies to aggregate the heterogeneous data collected by
several (possibly conflicting) sources. We shall see that a careful analysis of such
procedures is required, as some procedures do not guarantee the consistency of
the aggregated data. Moreover, in a scientific scenario, the data collected by the
sources are often sparse, i.e., typically, only few sources have information about
the same objects. This scenario is different from the one of judgement aggrega-
tion, where ‘abstainers’ are usually not the majority. The standard aggregation
procedures need then to be adapted to take into account what are the sources
that have relevant information about a given proposition.

By aggregating the information coming from heterogeneous epistemic con-
texts, these modal operators introduce a de-contextualisation, as intended in
[19], of the truth of propositions. Aggregated statements are cross-contextual,
they integrate (following a given strategy) the perspectives of several epistemic
contexts (see Sect. 3.4 for more details).

The paper is organised as follows. Section 2 introduces EMT and precisely
defines states as datasets collected by batteries of measurement systems. Section



3 introduces the logical framework for representing and reasoning about data
collected by a single source and the modal aggregation operators. Moreover,
it discusses the contextual nature of the measurement statements. Section 4
concludes the paper.

2 Measurement systems and datasets

According to the Representational Measurement Theory (RMT) [25], measure-
ment consists in building a mapping from an empirical relational structure to a
numerical relational structure such that the relations among numbers represent
the empirical relations among objects. Despite the precise and deep mathemati-
cal treatment, RMT seems too abstract to be used in empirical contexts [9]. One
first problem concerns the fact that RMT focuses on quantitative measurement
(interval or ratio properties). Secondly, RMT considers the empirical relational
structure (and the axioms governing it) as given. The problems of founding
measurement on empirical methods and of data sharing are not addressed.

The perspective of qualitative classification (nominal or ordinal properties),
that plays a fundamental role in disciplines like psychology, medicine, or soci-
ology, has been addressed by the theory of weak measurement introduced by
Finkelstein [8] and further elaborated by Mari [15]. In this weak perspective,
measurement becomes “uncorrelated with quantification: the measurability of a
property is a feature derived from experiment, not algebraic constraints” [15,
p.2894]. Thus, not all the empirical structures are mapped into numerical struc-
tures, they can also be mapped into symbolic classification systems, where sym-
bols may have a weak organization, not necessarily an algebraic one. Moreover,
Frigerio and colleagues [9] follows this weak perspective by presenting a for-
mal model that grounds measurement on measurement systems (MSs). Roughly
speaking, an MS is a (physical) device that is able to interact with the system
under measurement (SUM)1 and that is characterized by a set of empirically
discernible states and relations to which symbols are conventionally associated.
The output of the interaction between an MS and a SUM is a piece of (sym-
bolic) information. While weak measurement (as well as RMT) assumes SUMs
to be states or individual properties (tropes) of objects, following [16], we do
not commit to these kinds of entities and consider SUMs to be objects, i.e., MSs
are mediators between (external) objects and measurements, sorts of physical
embodiments of the classification systems ([17] provides additional details).

Definition 1. (Measurement system) A measurement system is a tuple M =
〈d,O, E , κ,S, λ〉 where:

– d is a device (usually a physical object);

– O is the set of objects the device d is able to interact with;

1 MSs are “provided with instructions specifying how such interaction must be per-
formed and interpreted” [9].



– E = 〈U,R1, . . . , Rn〉 is an empirical structure, i.e., a structure where U is the
set of empirically discernible states of all possible complex systems resulting
from the interaction of any object o ∈ O with d (noted by d • o) and Ri are
empirically discernible relations among the states in U ;2

– κ : O → U is the interaction function that associates to an object o ∈ O the
state of the complex system d • o;

– S = 〈S,RS1, . . . , RSn〉 is a symbolic structure, i.e., a structure where S is a
set of symbols and RSi are relations defined on S;3

– λ : U → S is the symbolization function, a one-to-one function between U
and S, such that Ri(u1, . . . , un) iff RSi(λ(u1), . . . , λ(un)).

The states U (through the interaction function κ) induce a partition on
the set of objects O: o ≈ o′ iff κ(o) = κ(o′) (U establishes the resolution of d).
Similarly, each Ri (and each RSi) induces a relation on objects: R̄i(o1, . . . , on)
iff Ri(κ(o1), . . . , κ(on)). The empirical structure is here determined by the MS
that induces a structure on objects (by interacting with them), i.e., an MS (and
the measurement procedure) provides an empirical access point to the world.
The symbolization function and the symbolic structure allow to abstract from
the empirical structure, they provide a symbolic encoding, i.e., S contains the
whole information in E but in a communicable and manipulable form. Different
measurement systems can then share the same symbolic structure allowing for
alternative ways to measure the same kind of properties.

As we discussed in the introduction, the objectivity and inter-subjectivity
of data is obtained via measurement standards and calibration. A measurement
standard establishes a set of physical (or theoretical) objects that is isomorphic
to the symbols in the classification system, i.e., they are the perfect realization of
the properties represented by the symbols. Calibration determines a one-to-one
correspondence between the (relations between the) positions of the pointers of
an MS and the (relations between the) properties in the classification system,
i.e., the positions of the pointers and the output symbols stand for properties,
they have a meaning.4 Thus, a measurement standard determines a classification
system while calibration individuates all the MSs that can be (interchangeably)
used to classify objects in this system.

As we anticipated in the introduction, we do not commit to perfect calibra-
tion. The MSs have been calibrated, but nothing guarantees that, at every time
data are collected, the MSs are correctly used and still calibrated. The outputs of
a single MS have a shared and precise meaning and are consistent, but conflicting
data collected by different MSs may exist.

A dataset groups all the measurements collected by a single MS.

Definition 2. (Dataset) A dataset is a couple D=〈M, D〉 where:

– M=〈d,O, E , κ,S, λ〉 is a measurement system;

2 Notice that E refers to potential interactions with objects, i.e., by abstracting from
specific objects, it depends only on the (physical) structure of d.

3 Differently from RMT, S is not necessarily a numerical structure.
4 See [16] for the formal details.



– D is the set of data collected by M, i.e., the (possibly empty) set of pairs
〈o,m〉 such that λ(κ(o)) = m.

Note that D is consistent by construction, it is not possible to have 〈o,m1〉,
〈o,m2〉 ∈ D with m1 6= m2.

An MS is able to classify objects along a single classification system. How-
ever, one can have data that concern different properties of the same object.5

The notion of measurement battery (MB) extends the one of MS by considering
sets of MSs able to classify objects along several classification systems (e.g., a
thermometer together with a scale, a ruler, etc.).6

Given a set {M1, . . . ,Mn} of MSs, we denote by Si the set of symbols of
Mi and by RShi the set of h-ary relations on Si-symbols in Mi.

Definition 3. (Measurement battery) A measurement battery is a finite set of
MSs M = {M1, . . . ,Mn} such that, for all Mi = 〈di, Xi, Ei, κi,Si, λi〉 and
Mj = 〈dj , Xj , Ej , κj ,Sj , λj〉 ∈M with i 6= j, we have that:

1. Xi = Xj = O, i.e., every Mi ∈M is about the same set of objects O; and
2. Si ∩ Sj=∅, i.e., the symbols of the MSs in M are disjoint.

A state collects all the datasets provided by the MSs in an MB. MBs and
states are the multidimensional counterparts of, respectively, MSs and datasets.

Definition 4. (State) A state s is a set of datasets s.t. their respective MSs
form a MB, i.e., s={〈M1,D1〉, . . . , 〈Mn,Dn〉} where {M1, . . . ,Mn} is a MB.

Note that, since each MS is consistent, the condition 2 in Definition 3 guar-
antees the consistency of states (i.e. it is not possible to have 〈o,m1〉, 〈o,m2〉
such that m1 6= m2 and m1,m2 are in the same symbolic structure).

Finally, we introduce a finite set of states S to model data coming from
distinct measurement batteries. Single states do not contain any contradictory
measurement, while different states can disagree. This disagreement is due to the
use of different MSs that classify objects along the same system of properties.

3 A logic for measurement

We present a predicative modal logic to represent and reason about the data
provided by a number of MBs. We shall see that a single state provides sufficient
information to define the semantics of logical connective and quantifiers. We
start by defining the predicative structure, then we shall discuss several modal
operators that may be used to represent aggregations of MBs.

5 In terms of the theory of conceptual spaces [10], single classification systems corre-
spond to the domains of a conceptual space (e.g., color, taste, shape, temperature,
etc.), while the whole space requires the composition of several systems.

6 It is possible to extend the notion of MB to allow to have different MSs relative to
the same classification system, e.g., different scales, different thermometers, etc.



3.1 Syntax and semantics

The vocabulary of our predicative language L contains: a set of individual
constants C = {c1, c2, . . . }, a set of individual variables V = {x1, x2, . . . }, a
set of n-ary (n ≥ 1) predicates R = {R1

1, R
1
2, . . . , R

2
1, R

2
2, . . . , R

j
i , . . . }, the set

{¬,∧,∨,→} of connectives, and the set {∀,∃} of quantifiers . The set of atomic
formula Atom of L is defined as follows: Qji (a1, . . . , aj) ∈ Atom iff Qji ∈ R
and a1, . . . , aj ∈ C. This definition inductively extends to the full predicative
language as usual.

Given a state s = {〈M1, D1〉, . . . , 〈Ml, Dl〉}, we denote by δ(s) the set of all
measurements that are present in some dataset of s, i.e., δ(s) = D1 ∪ . . . ∪Dl.

Definition 5. (Measurement model) A measurement model for L is a tuple
M = 〈s, ε, ι〉 where:

– s is a state concerning the set of objects O, i.e. a set {〈M1, D1〉, . . . , 〈Ml, Dl〉};
– ε is a function that maps individual constants into objects, ε : C→ O;
– ι is a function that maps:

– unary predicates into symbols of the MSs in the MB in s:
ι : R(1) → S1 ∪ · · · ∪ Sl;

– n-ary (n ≥ 2) predicates into n-ary relations of the MSs in the MB in s:
ι : R(n) → RSn1 ∪ · · · ∪ RSnl .

The domain of the interpretation is then given by the set of objects of the
state s, i.e., by O, the interpretation of the individual constants is provided by
ε, and the interpretation of predicates is provided by ι. We shall introduce the
interpretation for the variables when discussing the semantics of quantifiers.

The valuation function ||·||M maps formulas to a suitable set of truth-values.
Since unary predicate and n-ary (n ≥ 2) relations have slightly different inter-
pretations, we present their semantics separately. Moreover, to reflect a verifi-
cationist perspective on truth-making, we assume three truth values {t, f, u}.
Intuitively, true means that there exists a verifier of φ in δ(s), false means that
there exists a falsifier of φ in δ(s), and undetermined means that there is neither
a verifier nor a falsifier of φ in δ(s).

The semantics for atomic formulas involving unary predicates is defined as:

– ||P (a)||M = t iff 〈ε(a), ι(P )〉 ∈ δ(s);
– ||P (a)||M = f iff there exists 〈ε(a),m〉 ∈ δ(s) with m and ι(P ) ∈ Si,

for some i, and m 6= ι(P );
– ||P (a)||M = u iff otherwise.

A falsifier of P (a) is then a measurement of the object ε(a) along the same
system of properties of ι(P ). For instance, to falsify 1KG(a), among the data
available in s, one needs to find a weight-measurement of ε(a) with a result
different from ι(1KG). We can follow this idea because the symbols in the Si are
considered as mutually exclusive, i.e., in principle, the measurements of a single
object along a given classification system cannot result in different outputs.

The case of n-ary relations, for n ≥ 2, is captured by the following definition:



– ||R(a1, . . . , an)||M = t iff for 1 ≤ i ≤ n, there exist 〈ε(ai),mi〉 ∈ δ(s)
such that 〈m1, . . . ,mn〉 ∈ ι(R);

– ||R(a1, . . . , an)||M = f iff for 1 ≤ i ≤ n there exist 〈ε(ai),mi〉 ∈ δ(s) such that
mi ∈ Sl, ι(R) ∈ RSnl , and 〈m1, . . . ,mn〉 /∈ ι(R);

– ||R(a1, . . . , an)||M = u iff otherwise.

Negation, conjunction and disjunction are defined according to Kleene three-
valued semantics, see Table 1.a-c. Intuitively, ¬A is true (false) only when there
exist data that support the falsity (truth) of A. When A is undetermined also
¬A is undetermined, i.e., when we lack support for the falsity or truth of A,
we also lack support for the falsity or truth of ¬A. The data that falsify one
conjunct are enough to falsify the whole conjunction, while when one conjunct is
undetermined. Dual considerations hold for the disjunction. Implication is more
problematic. In Kleene logic, the implication is defined, as usual, by ¬A ∨B.
In this case, when both A and B are undetermined, according to Table 1.a&c,
A→ B is also undetermined. This seems empirically plausible but it clashes with
the idea that the logical principle A→ A holds even when A is undetermined.
Moreover, the refusal of A→ A results in a very weak logic. Thus, to obtain a
well-behaved logical implication, three-valued logics usually add the Lukasiewicz
implication that has the truth-table in Table 1.d, cf.[2]. With respect to the
classical definition of the implication, the only difference is that when both A
and B are undetermined, A→ B is true rather than undetermined.

Table 1. Truth-tables for connectives

¬ t u f

f u t

∧ t u f

t t u f
u u u f
f f f f

∨ t u f

t t t t
u t u u
f t u f

→ t u f

t t u f
u t t u
f t t t

(a) (b) (c) (d)

Let A(x) be a formula with x among its free variables and let σ : V→ O an
assignment of the variables to the elements of O.

– ||∀xA||M,σ = t iff for every d ∈ O, ||A||M,σ(x/d) = t;
– ||∀xA||M,σ = f iff there is a d ∈ O such that ||A||M,σ(x/d) = f ;
– ||∀xA||M,σ = u iff otherwise.

The existential quantifier is defined by ∃xA(x)↔ ¬∀x¬A(x). We say that a
formula φ is satisfiable if there exists a model M such that ||φ||M = t. A formula
φ is valid iff for every model M , ||φ||M = t.

The Hilbert system for propositional first-order Lukasiewicz three-valued
logic is proposed in [2, 12].

3.2 Dataset aggregation and modal operators

A single state provides sufficient information to express and to reason about
the formulas that are made true by a single MB. In this section, we aim at



addressing possible disagreements about the data provided by distinct MBs by
defining modalities that aggregate datasets. Each MB (its associated state) is
then viewed as a source of data to be submitted to an aggregation procedure
that has the task of integrating datasets and solving possible inconsistencies.

We assume a finite set of N states S and we extend L by adding a number
of modal operators �F that depend on a certain aggregation function F . An
aggregation function is a function F that maps N -tuples of truth-values associ-
ated to formulas to a collective/aggregated assignment of truth-values to that
formula, i.e., F : {t, u, f}N → {t, u, f}. By defining aggregators by means of F ,
we are assuming that the method for aggregation is the same for every statement
(a property called neutrality in judgment aggregation) and that the method is
the same for any tuple of truth values (independence), cf.[7]. Moreover, we are
defining aggregators on three possible truth-values, thus the standard definitions
of the theory of judgment aggregation have to be adapted, cf.[6, 23, 21].7

The �F operators aggregate the truth-values of the formulas that hold in the
various states, thus no new formula can be introduced in the aggregated outcome.
We follow here a coarse, rather than fine-grained, aggregation of formulas (cf.
[23, 17]), where in fact each collectively accepted formula must be accepted by
at least one state. Coarse aggregations often fail to elect an aggregated formula
that is a good trade off between the individual sources. For instance, suppose
that state 1 makes true 1KG(a) and state 2 makes true 3KG(a). A fine grained
aggregation allows to introduce a formula that expresses the mean of the weights,
i.e., 2KG(a), whereas a coarse aggregation cannot. A model of a fine-grained
aggregation in the context of measurement is left for future work. We refer to
[24] for an approach to fine-grained aggregation that can be applied to the logic
of measurement.

For the sake of example, we introduce a few aggregation functions. The first
example is the unanimous aggregator that associates a certain truth value only
if every state (MB) in S agrees on that truth value.

un(x1, . . . , xN ) =

{
xi, if for all i, j we have xi = xj ;

u, otherwise.

For the simple majority rule we assume that maj returns true (false) if the
majority of states accept the truth (falsity), and it returns u in any other case.8

maj (x1, . . . , xN ) =


t, if |{xi | xi = t}| > N/2;

f, if |{xi | xi = f}| > N/2;

u, otherwise.

7 A treatment for a larger class of aggregators in social choice is presented in [23]. The
motivation for the present treatment is that it easily allows for viewing aggregators
as modalities. An overview of functions used to aggregated data is discussed in [4].

8 The majority rule is generalized by quota rules that specify a threshold for acceptance
of a certain truth-value. In this case, to define F as a function, we have to separately
define quota rules for true, false, and undetermined.



The majority rule can be adapted to select only informative votes, that is,
MBs that return true or false. We label this aggregator determined majority.

dmaj (x1, . . . , xN ) =


t, if |{xi | xi = t}| > (N − |{xi | xi = u}|)/2;

t, if |{xi | xi = f}| > (N − |{xi | xi = u}|)/2;

u, otherwise.

The previous aggregators are anonymous, namely any permutation of the
MBs provides the same value, i.e., the reliability of the MBs is not considered.
However, aggregators that use information about the reliability of MBs, when
available, can be designed. Suppose to have a reliability partial order � defined
on the states S. It is possible, for instance, to define a family of aggregators
that associate truth-value x if the most reliable n sources wrt. � agree on x
and u otherwise. Moreover, to handle disagreement among the most reliable
source, one can use an auxiliary aggregation procedure, e.g. the majority rule.
A detailed analysis of the properties of these aggregators is left for future work.
However, we want to highlight that the reliability structure of the states, of the
contextual information provided by the MBs, allows to define more refined ag-
gregations. Additional meta-information could clearly be taken into account. For
instance, one could consider the W3C PROV-ontology9 to explicitly represent
some characteristics of the MBs and of the measurement processes.

The language L can then be extended by adding a number of modal operators
�F that depend on the aggregator F :

L�F
::= φ ∈ L | �Fφ

where the possible nesting of modalities is excluded, cf.[18].
A modal structure is a couple 〈S, F 〉, where S is a set (with cardinality N)

of states all about the same set of objects O and F is an aggregation function.
A model M for our modal logic is then obtained by adding for each state s ∈ S,
the interpretation εs for the individual constants and the interpretation ιs for
the predicates.

The semantics of the non-modal formulas of L is the one provided in Section
3.1, now relative to a state s ∈ S, i.e., ||φ||M,s = ||φ||〈s,εs,ιs〉.

The semantics of modal formulas relies on the function F :

||�Fφ||M,s = F (||φ||〈s1,εs1 ,ιs1 〉, . . . , ||φ||〈sN ,εsN ,ιsN 〉).

Note that the truth-value of any modal formula is the same in all the states in S.
We can construe the modal formulas as assessed wrt. the whole set of states S,
rather than wrt. a single state. Moreover, by our definition of aggregators, every
F is systematic [18], i.e., if |= φ↔ ψ, then |= �Fφ↔ �Fψ. The modalities �F
are then well-defined and they validate the rule of equivalents (RE) of minimal
modal logic [5, 18]. An axiomatisation of the minimal modal extension of three-
valued logic can then be given by adding (RE) to the propositional axioms.

(RE) ` φ↔ ψ, then ` �Fφ↔ �Fψ

9 See https://www.w3.org/TR/prov-overview



To characterise the aggregators, even in the bivalent case, a number of ad-
ditional axioms are required, see for instance [18] for the case of the majority
aggregator. We leave this aspect to a future work.

The condition (RE) does not constrain the way εs and ιs can vary across
the different states s ∈ S. In empirical terms, it is plausible to assume that the
interpretation of the individual constants is fixed for every s ∈ S, i.e., for every
s, s′ ∈ S and c ∈ C we have εs(c) = εs′(c). The Barcan formula and its converse
(BC), cf.[1], allows to axiomatise this property (i.e., a fixed domain assumption).

(BC) �F∀xA(x)↔ ∀x�FA(x)

We also assume that the interpretation of predicates is stable across states,
i.e., for every s, s′ ∈ S and P ∈ R we have ιs(P ) = ιs′(P ). On the one hand this
is empirically plausible: by means of measurement standards and calibration,
measurement theories aim at guaranteeing the sharing of data collected by dif-
ferent MBs, i.e., they individuate a set of reference systems. A predicate needs
then to have a stable intension, to always refer to the same symbol. On the other
hand, this is in line with standard modal logic where the intension of a pred-
icate P is represented by a unique function that provides, for each world, the
extension of P in such world. In our framework, the extension of a predicate P
in a state s may be defined as the set of objects o ∈ O such that 〈o, ι(P )〉 ∈ δ(s),
which of course can vary in different states.

3.3 Reasoning about aggregated data: possible inconsistency

We informally discuss a few issues in reasoning about aggregated data beyond
the minimal principle assumed by (RE). Consider the following example.

Example 1. Suppose S = {s1, s2, s3}, where the datasets provide information
about weights, lengths, and colours. Suppose we assess the atomic propositions
1KG(a), 1MT (a), RED(a), and ¬RED(a), which are grounded on their respec-
tive datasets. The profile of truth-values for each state is reported in Table 2.
Consider now the formula λ = ∀x((1KG(x) ∧ 1MT (x))↔ RED(x)) representing
a law that relates weights and lengths with colours. According to the semantics
of the connectives previously introduced, each state in S validates such law.

In this scenario, the aggregation by majority of the data exhibits a case of
discursive dilemma, [14]. In empirical terms, the law is consistent with all the
single sources, but not with the aggregated data, preventing, in this case, an
inductive generalisation. This means that aggregators may in principle provide
inconsistent information even if every input is consistent.

In order to infer the inconsistent outcome in our modal setting, three princi-
ples of reasoning are required.10

(RM) if ` φ→ ψ, then ` �Fφ→ �Fψ

10 Note that an analogous argument applies to the determined majority rule.



Table 2. Truth-values profile of the example 1

1KG(a) 1MT (a) RED(a) ¬RED(a) ∀x((1KG(x) ∧ 1MT (x)) ↔ RED(x))

s1 t t t f t
s2 t f f t t
s3 f t f t t

maj t t f t t

(C) �Fφ ∧�Fψ → �F (φ ∧ ψ)

(⊥) ¬�F⊥

(RM) is the monotonicity principle, the principle (C) allows for combining
aggregated information, and (⊥) excludes possibly inconsistent aggregated data
By assuming (RM), (C) and (⊥), together with the axioms for the propositional
logic, the calculus becomes inconsistent for the majoritarian aggregation.

In Example 1, �maj1KG(a) and �maj1MT (a) are true, therefore by (C) we
infer �maj(1KG(a) ∧ 1MT (a)). Since the law λ is true in every state, �majλ
is true. From �maj(1KG(a) ∧ 1MT (a)) and �majλ, by (C) and (RM), we infer
�majRED(a). However, we also have �maj¬RED(a), since a majority of states
makes RED(a) false. By (C) we obtain �maj(RED(a)∧¬RED(a)) and by (RE),
since every contradiction is logically equivalent, we obtain �maj⊥, against (⊥).

The principle (RM) legitimates the use of a logical inference at the level of
aggregated data. E.g., it justifies to infer �majRED(a) from �maj1KG(a) and
�maj1MT (a) via �majλ. Notice that (RM) applies regardless of the majority
that supports those data, the actual set of states that produces them.

While the principle (C) appears a reasonable principle for combining aggre-
gated data, in fact it is also insensitive to the fact that possibly distinct, although
overlapping, sets of MBs can be the source of the data. In the example, s1 and
s2 agree on 1KG(a), whereas s1 and s3 agree on 1MT (a).

(RM) and (C) seem to identify two types of reasoning: an intra-state rea-
soning, where each state reasons about the data by means of the law, and an
inter-state reasoning, where reasoning is performed at the level of aggregated
data, by means of the law. It is in fact possible to separate the two forms of rea-
soning; for instance, by distinguishing two types of combinations of data (i.e.,
conjunction), one that applies to the case where the same states support a num-
ber of data, the other that combines data produced by distinct sets of states.
This move is capable of restoring consistency, although it requires to enter the
realm of substructural logics for modelling reasoning about aggregated data [20–
22]. In fact, the possible inconsistency of the aggregated sets depends only on
the meaning of logical connectives, not on the atomic formula produced by the
MBs. If our language only contains atomic proposition, e.g., we prevent talking
about 1KG(a) ∧ 1MT (a) and we content with 1KG(a) and 1MT (a) or we ex-
clude laws to connect data, the majority is indeed consistent. Hence, it is worthy



to investigate logical operators that preserve consistency under the majority rule
and suitably represent the rules of reasoning about aggregated data.

By contrast, a simple solution, is to accept that there might be cases of
inconsistent data aggregation and give up the axiom (⊥). Note that the non-
anonymous procedures that we defined do indeed preserve consistency, however
they rest on the demanding assumption of knowing in advance the most reli-
able MBs. More sophisticated aggregators require dropping the systematicity
assumption that we embraced here and they are therefore left for future work.

3.4 The contextual nature of measurement

We discuss now the contextual nature of measurement statements in the model
that we proposed. We have introduced two types of statements expressing mea-
surement: non-modal statements, that are assessed with respect to a single state,
and modal statements that are assessed with respect to a plurality of states, by
aggregating the information therein.

It useful here to apply the distinction between two interpretations of context
proposed in [19]. A context can be intended in an objective (or ontological) way,
i.e., basically as a metaphysical state of affairs, or in a subjective (or epistemic)
way, i.e., basically as a cognitive representation of the world. According to this
dichotomy, the non-modal statements of our logic are close to the epistemic view
of context. The holding of a formula (e.g., 1KG(a)) at a given state depends on
the considered measurement battery, on its representation systems (the symbolic
classification systems), on the resolution of the devices in the battery, and on
the actual measurement processes performed. As observed in the introduction,
it is however important to note that the degree of subjectivity of measurements
is lower than the one of personal evaluations, opinions, perceptions, etc.

By contrast, the modal statements of our logic aggregate the information
coming from several epistemic contexts. Thus, on the one hand, the aggregated
statements are not immediately objective, in the above sense, as they are always
mediated by the measurement systems, they are not directly reducible to real
states of affairs, to sets of features of the world. On the other hand they are not
merely subjective, as they balance between the viewpoints of different epistemic
contexts. The aggregated statements seem then to constitute a further type of
context, which we may term an inter-subjective context, which results from the
aggregation of a number of subjective (epistemic) contexts.

We suggest an analogy between the aggregation of different epistemic context
with the operation of de-contextualisation used in [19] to dismiss the demanding
idea of an ontological context, while preserving the possiblity of an objective
context, as resulting from intersubjective agreement (viz. “Objectivity is always
a result of our interaction, not a datum”, [19], p. 283.)

In this sense, a theory of the aggregation of heterogeneous (epistemic) con-
texts may serve as the formal backbone of a theory of de-contextualisation,
viewed as a theory of multiagent interaction. We leave the development of this
suggestion to a dedicated work.



4 Conclusion

This work has three main contributions. Firstly, we introduced an explicit defi-
nition of states in terms of the epistemic theory of measurement. States are not
simple indexes for possible worlds, they are sets of measurements collected by
MBs. The datasets associated to each MB depend on the nature of the MB,
therefore the information that we may assess at a state has indeed a contextual
nature explained and justified in terms of the epistemic measurement theory.

The second contribution concerns the characterisation of the meaning, or
more precisely the intension, of the properties represented by the predicates in
L. The theory of measurement allows us to interpret (unary) predicates into
symbols that, by means of measurement standards, are conventionally assigned
to perfect realisations of properties. While standard modal logic encapsulates
the intension of a predicate into a function from worlds to sets of objects, our
approach is more descriptive and operative, it associates a computational ‘recipe’
to a predicate: to calculate the extension of a predicate in a given state, one needs
to look for the measurements (in such state) that have as output the symbol
associated to the predicate.

Thirdly, we introduced modal operators to model aggregators of (possibly
conflicting) data and we discussed the contextual nature of measurement state-
ments distinguishing the device-based measurement and the aggregated mea-
surement.
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