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Abstract. A concept is traditionally defined via the necessary and sufficient condi-
tions that clearly determine its extension. By contrast, cognitive views of concepts
intend to account for empirical data that show that categorisation under a concept
presents typicality effects and a certain degree of indeterminacy. We propose a for-
mal language to compactly represent concepts by leveraging on weighted logical
formulas. In this way, we can model the possible synergies among the qualities that
are relevant for categorising an object under a concept. We show that our proposal
can account for a number of views of concepts such as the prototype theory and the
exemplar theory. Moreover, we show how the proposed model can overcome some
limitations of cognitive views.
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1. Introduction

The nature of concepts has been longly debated and analysed both in philosophy and
cognitive science (see [1,2] for good introductions). As summarised in [1], it is still
controversial whether concepts are mental representations or abstract entities, whether
they are objects or cognitive/behavioural abilities. In this paper we focus on how concepts
can be formally modelled, that is, on the languages for representing and reasoning about
concepts and categorisation. Our analysis is mostly independent of the exact nature of
concepts, however, following [3], our underlying intuition is that concepts are a kind of
representational device that enables cognitive agents to classify objects.

A formal model of concepts and categorisation is fundamental not only in the scope
of cognitive science but also for establishing a motivated connection between experimen-
tal sciences and knowledge representation or, more generally, artificial intelligence. In
these fields, the initial attempts to explicitly consider the connection between concepts
and experimental data about how human agents actually perform classifications—e.g.,
the theory of frames developed by Marvin Minsky [4]—have been almost abandoned
because of the lack of a clear and formal characterisation of concepts. Rigorous logi-
cal approaches usually represent concepts by formal definitions, i.e., sets of necessary
and sufficient conditions for membership. This view, termed here the classical view, can
be traced back to one of the founding fathers of analytical philosophy, namely to the
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seminal work of Frege [5], where concepts are defined by logical combinations of ba-
sic predicates. In this view, categorisation reduces to the satisfaction of all the condi-
tions stated in the definition. An object is then either categorised or not under a concept,
there is indeed no uncertainty, and all the instances of a concept are treated equally. By
contrast, empirical experiments in psychology and cognitive science show that everyday
concepts often lack a precise definition and that categorisation presents typicality effects
and a certain degree of indeterminacy. Fuzzy, probabilistic, and non-monotonic logics
modified the classical view to account for the typicality and the indeterminacy of the
categorisation, but they introduced some technical difficulties that are still debated (e.g.,
a solid semantics, a grounded choice of logical operators). Moreover, although there is
evidence that cognitive agents do not conform to classical logic, there is no evidence that
they do conform to fuzzy, probabilistic, or non-monotonic logics instead. The limita-
tions of the classical view, even when extended to non-classical logics, pushed cognitive
scientists to develop alternative models to match the empirical data. These models are
usually grouped into the prototype view, the exemplar view, and the knowledge view also
called theory-theory (see [1,2]), but also Gärdenfors’s theory of conceptual spaces [3]
and Barsalou’s theory of frames [6] enter this category.

A prototype is “a prestored representation of the usual properties associated with the
concept’s instances” [7, p.487] that is usually given in terms of an attribute-value model.
For example, in [7] a prototype is represented by a set of attributes—e.g., colour, shape,
taste—with associated diagnosticity values that represent “how useful the attribute is
in discriminating instances of the concept from instances of contrasting concepts” [7,
p.487]. For each attribute, a prototype contains a list of values—e.g., red, green, brown
for the colour-attribute—weighted by their salience, which is a measure of typicality.
By listing alternative values for a given attribute (together with their salience), a pro-
totype does not describe a single best example of a concept, rather it accounts for the
variability of the instances of such concept. For example, the apple prototype allows for
several colours, although the most typical apple may be red. A prototype provides then
a summary representation of a concept, a unified description of the concept as a whole
“rather than separate representations for each member or for different classes of mem-
bers” [2, p.42]. The degree of categorisation under a concept corresponds to the degree
of similarity between (the representation of) the object and the prototype of the concept.
This degree of similarity is computed by means of a rule that applies to all concepts, e.g.,
Tversky’s contrast rule [8], which considers the contrast between shared and distinctive
qualities.

The exemplar view rejects the idea of having a summary representation describing
all the instances of a concept in an unified way. Instead, it grounds categorisation on
the known exemplars. I.e., one must access the memory and compute the degree of sim-
ilarity between the object to be categorised and the known exemplars (that have been
already categorised). The degree of categorisation under a concept is then computed on
the basis of these degrees of similarity and of the categorisation of the known exemplars.
Differently from the prototype view, even after having seen several apples, there is no
general description of what apples are. Furthermore, to categorise an object as an ap-
ple, the exemplars of apples are not enough, categorisation is a comparative process that
necessarily involves all the known exemplars.

In the knowledge view, categorisation is intended as a reasoning process that uses
and is consistent with general knowledge about the domain of interest. For reasons of



space, we cannot enter the details, however note that the uniform treatment of the cat-
egorisation process and of general knowledge about the world is still a challenge for
cognitive models.

Given the criticisms to the classical view, cognitive scientists maintain a quite reluc-
tant attitude towards logic-based approaches. This attitude is even stronger among the
followers of the exemplar view that undermines the very idea of a summary description
of a concept. However, logical approaches offer—via the inference mechanism and the
set of explicit constraints—a general framework to take into account how categorisation
and general knowledge about the world interact.

In this paper, we try to re-analyse the limitations and the strengths of the classical
view, by exploring a different approach to the formal specifications of concepts that ac-
counts for typicality effects and categorisation indeterminacy. We expand the classical
view by using weighted logical formulas to model the relevance and the possible syner-
gies among the features that characterise a concept. To do that, we take advantage of the
logical approaches to compactly represent functions developed in Economics and Multi-
agent Systems (cf. [9]). In particular, we adapt the techniques of [10,11]—originally de-
voted to compactly represent utility functions over combinations of goods—to represent
concepts.

The remainder of the paper is organised as follows. In Section 2, we discuss the
different views of concepts and we define a general framework to compare them. Sec-
tion 3 introduces the formal language to represent concepts based on weighted formulas
and assesses its expressivity. Section 4 shows how the prototype view and the exemplar
view can be represented by using weighted formulas. Section 5 concludes the paper by
indicating a number of viable extensions of the use of weighted formulas.

2. Preliminary considerations

In the classical view, complex concepts are defined in terms of logical combinations of
basic concepts represented by primitive and unstructured predicates. The distinction be-
tween complex and basic concepts is however not exclusive of the classical view. We
have seen that the prototype view embraces an attribute-value model, i.e., a prototype
is characterised by several attributes that can assume different (weighted) values, which
usually represent the sensory or perceptual capacities of subjects. For instance, red and
blue are values on the colour-attribute, while 1kg and 2kg are both weights. The values
of the attributes play here the role of basic concepts, applied to the objects to be cate-
gorised, but they are partitioned by attributes. Furthermore, values are usually consid-
ered holistic and, the ones belonging to the same attribute, mutually exclusive: an object
cannot simultaneously weight 1kg and 2kg or be red and blue (even when it has a red
part and a blue part). These assumptions encode knowledge about attributes and values
that in the classic view must be explicitly introduced. The exemplar view—in particular
the Generalized Context Model (GCM) introduced in [12]—as well as Gardenfor’s con-
ceptual spaces still assume that stimuli are decomposed along several dimensions, that
roughly correspond to attributes.2 In addition, the dimensions are endowed with a metric,

2Conceptual spaces are more sophisticated. They assume that spaces are decomposed into domains (e.g., the
colour domain) that, in their turn, correspond to maximal sets of integral dimensions (e.g., {hue, chromaticness,
brightness} for the colour-domain). Here we ignore this distinction and consider only unstructured attributes.



a distance relation—usually determined using multidimensional scaling [13] on the ba-
sis of similarity judgements—defined between the points (i.e, the counterparts of values)
in these dimensions. It is then possible, for instance, to order weights or to express the
fact that orange is closer to red than to blue. Furthermore, a metric on the whole space
can be defined (several possibilities exist) on the basis of the metrics on its dimensions.
The metrics of the dimensions encode quite sophisticated knowledge about the values
of the attributes that, as we will see, partially explains the expressive power of these
approaches.

In order to generalise from specific views of concepts, following [14] and [15],
we consider an n-dimensional space Sn = ∆1×·· ·×∆n where the ∆i-dimensions corre-
spond to attributes—e.g., the three dimensional ∆colour×∆shape×∆taste space. The points
in Sn are n-tuple of values, e.g., 〈red,round,sweet〉. In this framework, the categori-
sation under a concept C can then be seen as a function fC : Sn → R that associates
to each point p ∈ Sn the degree of categorisation (under C) of the object (represented
by) p. In the classical view, there are indeed only two ‘degrees’ of categorisation, i.e.,
fC : Sn → {0,1}. Therefore, it is possible to define the extension of the concept C by
ext(C) = {p ∈ Sn | fC(p) = 1}.

This general framework can be used to compare the previously discussed views of
concepts. As we have seen, a first element of comparison concerns the available knowl-
edge about the values of the attributes. To comply with this framework, the classical
view needs to be tuned by setting a correspondence between the basic predicates of the
logical language and the values of the attributes, and by partitioning the basic predicates
into the required dimensions. The prototype view embraces the attribute-value model but
does not commit to metric dimensions. This also holds for some implementations of the
exemplar view. Differently, conceptual spaces and GCM explicitly ground similarity on
the metrics. A second and more important element of comparison concerns the way in
which the categorisation function is specified. Note that the space Sn has a combinatorial
nature, as it includes all the possible combinations of values. This combinatorial aspect
is particularly delicate for cognitive scientists, who often work under the assumption that
“the task of category systems is to provide maximum information with the least cognitive
effort” [16, p.190]. Thus, in cognitive terms, the plain extensional representation of the
functions fC—i.e., the list of the degrees of categorisation for all the points in Sn—is not
plausible; one needs in fact a more economic specification. In the prototype view, the fC
is described by the prototype of C (also containing salience and typicality information)
and by a categorisation rule, that is shared by all the concepts, e.g., the contrast rule, that
computes the degree of categorisation on the basis of the shared and distinctive qualities
between an object and a prototype. In the exemplar view, usually the whole set of known
exemplars (together with their categorisation) is demanded to describe any fC. The de-
grees of similarity between the exemplars and the object to be categorised can be com-
puted following the technique of the prototype view, or by relying on the metric. Once
these degrees of similarity are calculated, they can be aggregated into a single degree
of categorisation under C. The representation of fC is then less compact than the previ-
ous one, where prototypes offer summary descriptions of concepts that abstract from the
multitude of the known exemplars.

It is important to note that these cognitive views, and in particular the exemplar
view, tend to establish a one-to-one correspondence between the points in Sn and the
representations of objects. This entails that objects are reduced to clusters of qualities.



In [17] we criticised this hypothesis from an ontological perspective, however we claim
that the identification between points and objects is problematic also from a cognitive or
epistemological perspective. Firstly, if objects (exemplars) are perceived and memorised
(together with their categorisation), then it seems quite implausible to presuppose that
the precise values for all the attributes in Sn are known and stored in memory. This
observation applies in particular to the attributes that have a very low or null salience. For
instance, one can categorise an object as a melon even without knowing its temperature
or just by guessing (with a given degree of tolerance) its weight. Second, categorisations
seem revisable after the acquirement of new information. For instance, something that
appeared to be a melon, after an accurate inspection, reveals to be a plastic model of
a melon. For these reasons, we shall embrace a more liberal approach that allows for
partial information about objects (an epistemic state about such object) to enter the input
of the categorisation function. The value of the categorisation function expresses then the
degree of categorisation of an object under a concept given the available information. On
the one hand, this assumption seems to be consistent with the empirical data about the
individuation and the re-identification of objects. For instance, Pylyshyn [18] supports
the idea that the initial individuation and the tracking of objects is not conceptual, rather
it is based on a lower level mechanism, which is built into the visual system, that allows
for creating and updating an object file [19]. An object file groups and maintains the
information available on an object that is acquired and updated through time. On the
other hand, partial information allows for a non-monotonic categorisation mechanism,
an important aspect that will be analysed in Section 3.

Let us now go back to the classical view and, by putting aside, for a moment,
the degree of categorisation, consider the extension of a concept C (ext(C)) previ-
ously defined. In first-order logic, one can associate to ext(C) the formula C(x) ≡∨
〈q1,...,qn〉∈ext(C)(Q1(x)∧ . . .∧Qn(x)) (where Qi is the basic predicate that corresponds

to the value qi). That is, an object is classified under C if and only if it satisfies
one of the conjunctions of qualities of the formula associated to ext(C). Firstly, note
that, differently from what suggested by the traditional arguments addressed to criti-
cise the classical view, this definition does not necessarily presuppose essential qual-
ities of C: a core set of qualities shared by all the instances of C is not needed. The
Wittgesteinian idea of family resemblance is then not ruled out by the classical view,
by the mere logical phrasing. Secondly, although the previous formulation is in general
not economic, however, in some cases, it can be compacted. For instance, suppose that
ext(C) = {〈crimson,1kg〉,〈scarlet,1kg〉,〈magenta,1kg〉}. In this case, one may define
Red(x) ≡ Crimson(x)∨Magenta(x)∨ Scarlet(x) and C(x)≡ Red(x)∧1Kg(x). Thirdly,
and more importantly, in the logical approach one can take advantage of the logical lan-
guage to define constraints about how an object matches the specification. This is par-
ticularly relevant in the presence of knowledge about the domain. For instance, if we
know that in our domain a complex combination of (possibly negated) qualities implies
another quality, then we can use this information to classify an object under C, although
we do not explicitly know the combinations of values listed in ext(C). The prototype and
the exemplar views do not use this powerful inferential mechanism, whose adjunction
would enable the integration of these views with the knowledge view.3

3In the framework of conceptual spaces, correlations are used to introduce constraints on the possible com-
binations of attribute-values. However, the expressive power of these correlations and the way they are repre-
sented are not explicitly stated.



In the remainder of this paper, we propose a uniform framework to model the differ-
ent views of concepts that we discussed. Moreover, the proposed formalisation will allow
us to indicate the limitations and to suggest possible extensions of those approaches.

3. A representation of concepts

We introduce a standard predicative language L with a set of individual constants C, a
set of individual variables V, and sets of predicates R. The set of atomic formulas Atom
is defined by R(t1, . . . , tn) ∈ Atom iff R ∈ R and t1, . . . , tn ∈ C∪V (where n is the arity of
R). The definition of formulas is by induction as follows:

L := ψ ∈ Atom | ¬φ | φ ∧φ | φ ∨φ | φ → φ | ∀xφ(x) | ∃xφ(x).

Let F be a finite set of closed formulas of L . An epistemic state E is just a subset
of F . We say that a closed formula φ of L holds in the epistemic state E iff E ` φ ,
where ` is the usual syntactic entailment relation of first-order logic. An epistemic state
can be intended as the syntactic finite representation of a (number of) model(s) of a set
of sentences. In cognitive terms, it allows for coping with the limitations of an agent by
representing the information that is available to the agent in a certain circumstance.

We shall model concepts by means of sets of weighted formulas, which were in-
troduced to compactly represent utility functions over (finite) combinations of goods in
[10,11]. Here, we extend the approach of [10,11] to predicative formulas.

A weighted formula is a pair (φ ,w) where φ is a formula of L and w is a weight,
usually a real number w ∈ R.

A concept base is a finite set of weighted formulas C = {(φ1,w1), . . . ,(φm,wm)}
where the φ js are either closed formulas or open formulas with a designated single free
variable x; we also assume that a concept base has to include at least one such open
formula.

The degree of categorisation of an object a under the concept (represented by the
concept base) C in the epistemic state E is defined in two steps: firstly, we replace the
occurrences of the free variable x in C with the individual constant a and we collect the
weights of the formulas in C (after the substitution of x with a) that hold in E ; secondly,
we aggregate those weights by means of an aggregation function F : P(R)→ R. Given
an aggregator F , the degree of categorisation under C is represented by the function
vC : P(F )×C → R, where C ⊆ C is a finite set of individual constants, defined as
follows:

vC(E ,a) = F{w | (φ ,w) ∈ C and E ` φ [x/a]}. (1)

In the remainder of this paper, we assume that F is the sum of the weights, but other
choices may be discussed.

To enable degrees of classification in [0,1], we can assume any order-preserving
bijective function f : R→ [0,1] and compose vC with f , i.e., v̄C = f (vC(E ,a)). Vice versa
to obtain a binary categorisation, i.e. degrees in {0,1}, we can just set a threshold t, i.e.,
v̄C = 1 iff vC(E ,a)≥ t.

Example 1. Consider the concept base C = {(Red(x)∨Green(x),w1),(Round(x),w2),
(∃y(Eat(y,x)∧White(y)),w3)}. This means that the relevant information to establish



the degree of categorisation under C of an object a is whether (i) it is red or green,
(ii) it is round, and (iii) it is eaten by a white entity. Consider the epistemic state E =
{Red(a),White(b),Eat(b,a)}, i.e., the agent knows that a is red and is eaten by b that
is white. In this case, vC(E ,a) is computed as follows. Firstly, we replace x with a in
the open formulas of C and we obtain Red(a)∨Green(a), Round(a), and ∃y(Eat(y,a)∧
White(y)). Then we sum the weights of the formulas that are entailed by E —namely
Red(a)∨Green(a) and ∃y(Eat(y,a)∧White(y))—obtaining vC(E ,a) = w1 +w3. �

The concept bases approach is sufficiently expressive to generate all the functions
from epistemic states to real numbers, at least on finite epistemic states. This entails
that, by means of a concept base, we can represent every possible way of weighting the
information conveyed by an epistemic state, when defining a concept. We establish this
fact in the following proposition.

Given a set of formulas X , we write
∧

X to denote the conjunction of all the formulas
in X . In case X is a singleton,

∧
X = X . We say that two epistemic states E and E ′ are

logically equivalent when the conjunction of the formulas in E is logically equivalent
to the conjunction of the formulas in E ′:

∧
E ≡

∧
E ′. Notice that a concept base cannot

distinguish between two logically equivalent epistemic states, therefore we discuss func-
tions from the power set of F modulo logical equivalence ≡: we denote by P(F )/≡
the set of equivalence classes of sets of formulas of F modulo logical equivalence ≡.

Proposition 1. Every function v : P(F )/≡→R can be generated by means of a concept
base C and by the sum aggregator. That is, for every E , v(E ) = vC(E ,a) for some concept
base C and finite set of constants C , where a ∈ C .

Proof. (Sketch) We can establish this result by means of Theorem (3.2) in [10] that shows
that concept bases defined on any propositional formulas can represent every function
from finite propositional models (assignments) to real numbers.

Let v be a function from P(F )/≡ to R and (X ,w) a pair X ∈P(F )/≡ and w ∈R.
To simplify the following argument, we assume that the set C = {a}, for a designated
constant a that occurs in some of the formulas of F .

For each (X ,w) ∈ v (i.e. in the graph of v), such that |X | = m, we include in the
concept base C the weighted formula (φ ′1∧ ·· ·∧φ ′m,wX ) where for φ j ∈ X that does not
contain the constant a, φ ′j = φ j and for φ j ∈X that contains a, φ ′j = φ j[a/x]. Moreover, wX
is a weight which is inductively computed as follows, for any non-empty set of formulas
X , Y ∈P(F )/≡ and Y 6= X :4

wX = v(X)− ∑
X`

∧
Y

wY . (2)

The concept base C generates the function v. For every X , we show that v(X) =
vC(X ,a). Suppose (X ,w) ∈ v. Then vC(X ,a) is the sum of all the formulas in C that
are entailed by X . By construction of C, X entails the following formulas of C: X `
φ ′1∧·· ·∧φ ′m, and X `

∧
Y , for every (

∧
Y,wY ) ∈ C such that X `

∧
Y (where we possibly

4Note that the value of v on the empty set has to be set equivalent to the weight associated to a tautology.



replace the occurrences of a with x in the formulas of Y ). Thus vC(X) = wX +∑X`Y wY ,
which by Definition (2) equals to: v(X)−∑X`Y wY +∑X`Y wY = v(X).5

Note that the function v in the previous proof is represented by a concept base where
formulas are all conjunctions of formulas of F . That is, restricting to conjunctions is
sufficient to generate all the functions from the epistemic states to the reals.

By restricting the types of formulas in the definition of the concept base, we can
single out specific classes of functions. For instance, consider the concept bases with
the form C = {(Q1(x),w1), . . . ,(Qm(x),wm)}, that is, where formulas are restricted to
atomic predicates. The categorisation function generated by C is additive on the formulas
included in the epistemic states, i.e., vC(E ,a) = ∑e∈E vC({e},a).

Concept bases allow us also to express super-additive and sub-addictive functions.
A function vC is super-addictive on epistemic states when vC(E ∪ E ′,a) ≥ vC(E ,a) +
vC(E ′,a). E.g., consider C= {(Q1(x),w1),(Q2(x),w2),(Q1(x)∧Q2(x),w3)} where w3 >
w1 +w2. In this case, for the categorisation under C, the relevance of the conjunction of
Q1 and Q2 outweighs the one of each quality considered separately.

The case of sub-additive functions, i.e., when vC(E ∪E ′,a) ≤ vC(E ,a)+ vC(E ′,a),
is related to the issue of monotonicity. A consequence of this modelling is that the cat-
egorisation under a concept is non-monotonic in the following sense. Suppose that E
and E ′ are epistemic states such that E ⊆ E ′, i.e., E ′ contains more information than
E . There are concept bases C for which vC(E ,a) ≥ vC(E ′,a). For instance, consider
C= {(Q1(x),2),(Q2(x),−1)}, E = {Q1(a)}, and E ′ = {Q1(a),Q2(a)}. Then we obtain
that vC(E ,a) = 2 while vC(E ′,a) = 1. Non-monotonicity is a consequence of our view
of categorisation as depending on the epistemic state of a cognitive agent, on the actual
information that are available to the agent when performing the categorisation.6

4. Applications to cognitive views of concepts

We restrict here to a finite space Sn = ∆1×·· ·×∆n of vectors of values within the dimen-
sions ∆i. Sn serves as a general framework to model concepts. In particular, we consider
the function fC : Sn→R introduced in Section 2 to represent the degree of categorisation
under the concepts C of an object, which is associated to a point in Sn. This space is
basically shared by many cognitive approaches, although some of them use richer struc-
tures. E.g., Gärdenfors assumes a continuous metric structure where the ∆i are domains
possibly composed by several dimensions. However, for the purpose of analysing the
fC-functions, this model suffices.

We capture (the structure of) the space Sn in our predicative language as fol-
lows. We represent the quality values qi in each ∆i by means of atomic unary
predicates Qi of our language L , which are partitioned according to the dimen-
sions ∆i. Our set of predicates includes then the following typed unary predicates:
{Q1

1,Q
2
1, . . . ,Q

m1
1 , . . . ,Q1

n,Q
2
n, . . . ,Q

mn
n }, where mh is the cardinality of ∆h. We assume

a standard first-order model (D, I) to define the semantics of the formulas of our lan-

5This results generalises the proof of Theorem (3.2) in [10]. We assume here that the domain is every possible
finite set of formulas, and not just sets of atoms. For this reason, the way of computing weights has to take into
account the sets Y such that X `

∧
Y , and not just the subsets of X .

6For a characterisation of the types of functions generated by types of concept bases, we may adapt the
results in [10].



guage L . In particular, contra Gärdenfors, we do not suppose that the points of Sn

are objects, as we interpret our individual constants in the domain D rather than in
Sn. Since the values in each dimension are alternative, we assume axioms with form
∀x(Qi

h(x)→¬Qj
h(x)), for every i 6= j. That means that an object cannot satisfy two dis-

tinct atomic predicates in the same dimension.
In the subsequent sections, we discuss how to represent fC-functions by means of

concept bases, then we consider the prototype view and the exemplar view.

4.1. Representing the categorisation functions

Consider now a finite set of individual constants C ⊆ C representing a set of objects.
A point p ∈ Sn is represented by the set τ(p) containing n · |C | atomic closed formu-
las of L , one for each instantiation by a constant in C of the predicate correspond-
ing to the value of the point in the dimension ∆i. For instance, given C = {a,b},
the representation of p = 〈red,1kg〉 ∈ ∆color × ∆weight is the set of formulas τ(p) =
{Red(a),1kg(a),Red(b),1kg(b)}.

Let F be a set of closed formulas that includes the set of formulas that represent
all the points in Sn (given a set C ). We can approach the problem of representing the
function fC : Sn → R by introducing a concept base C for which the generated function
vC : P(F )×C → R is such that fC(p) = w iff vC(τ(p),c) = w for all c ∈ C .

In this specific case, the following construction suffices:

fC(〈q1, . . . ,qn〉) = w iff (Q1(x)∧ . . .∧Qn(x),w) ∈ C. (3)

By construction, τ(〈q1, . . . ,qn〉) contains the set of formulas {Q1(c), . . . ,Qn(c)} for all
c∈C (and no additional information on c). It is easy then to see then that vC(τ(p),c) = w
for all c ∈ C . Thus, our framework can represent any fC.7 In this case, performing the
classification under the concept C requires to know all the qualities (in Sn) of the object.
Indeed, this observation is not surprising because it also applies to fC.

Example 2. Consider S2 = weight× shape = {1kg,2kg,3kg}× {red,blue,brown} and
suppose that fC(p) 6= 0 only in the following cases:

{〈〈1kg,red〉,w〉,〈〈1kg,blue〉,w〉,〈〈1kg,brown〉,w〉,〈〈3kg,red〉,w′〉}.

According to the previous construction, we obtain the following concept base:

C= {(1Kg(x)∧Red(x),w),(1Kg(x)∧Blue(x),w),(1Kg(x)∧Brown(x),w),

(3Kg(x)∧Red(x),w′)}. (4)

7This claim can be inferred also as a corollary of Proposition 1 as follows. Let τ(Sn) =
⋃

p∈Sn τ(p). Given
fC : Sn → R, we can (partially) define a class of functions f ′C : P(τ(Sn))→ R such that fC(p) = f ′C(τ(p)).
Notice that any f ′C is a function from the powerset of a set of formulas to the real numbers. Therefore, by
Proposition 1, f ′C can be represented by means of a concept base, hence also fC can. However, f ′C may contain
more information than fC, since f ′C returns a value on any subset of τ(Sn). In particular, it returns a value for
the proper subsets of τ(p), possibly providing information about the relative weight of the qualities in τ(p) for
the classification degree of τ(p).



In this case, we can find a more compact concept base C′—where C and C′ generate
the same function—by noticing that, regardless of the shape, weighting 1kg is sufficient
to be the categorised with degree w.8

C′ = {(1Kg(x),w),(3Kg(x)∧Red(x),w′)}. (5)

4.2. Prototypes view

We have seen that the prototype view economically represents an fC in terms of a given
prototype and a general categorisation rule, which is valid for all concepts. Usually, the
prototype is not reduced to the best example of the concept. Here we consider the ap-
proach in [7] where a prototype is represented in terms of a diagnosticity value for each
dimension ∆i and a list of values, weighted by salience, for each ∆i. Alternative categori-
sation rules exist. However, to illustrate the general mechanism for capturing the proto-
type view in our framework, we suppose here a rule that just sums up the products of
the diagnosticity and salience weights of all the values that the object to be categorised
shares with the prototype. In this way, the categorisation rule can be directly represented
by a function F as in Equation (1). It remains to be shown how to build the concept base.

Assume Sn and the prototype πC defined as follows (where q j
i is a quality value in

∆ j, s j
i is a salience weight, and q j

i 6= q j
k for i 6= k):

πC = {(q1
1,s

1
1), . . . ,(q

1
r ,s

1
r ), . . . ,(q

n
1,s

n
1), . . . ,(q

n
m,s

n
m)}.

Furthermore, assume that the diagnosticity weight of ∆i is di. The concept base C that
represents the prototype πC can be easily introduced as follows:

C= {(Q1
1(x),s

1
1 ·d1), . . . ,(Q1

r (x),s
1
r ·d1), . . . ,(Qn

1(x),s
n
1 ·dn), . . . ,(Qn

m(x),s
n
m ·dn)}.

Firstly, note that in our approach vC(E ,a) is defined even when E contains partial
information about a, e.g., when only some qualities of a are known. Secondly, it is easy
to see that linear separability holds in this case, i.e., the degree of categorisation is deter-
mined by summing up the weights of independent qualities of the object. Accordingly,
the concept base C generates only additive functions (see [10,11]). However, the concept
bases approach allows also to keep track of the configurations of qualities that are rele-
vant for the classification under C (see Example 3). Thirdly, as we noticed, this approach
allows also for modelling non-monotonic behaviours that are important, for instance, for
representing concepts in the domain of medical diagnosis (see Example 4).

Example 3. Consider the following three alternative concept bases for apples:

A1= {(Red(x),w1),(Green(x),w2),(Round(x),w3)},

A2= {(Red(x)∧Round(x),w1 +w3),(Green(x)∧Round(x),w2 +w3)};

A3= {(Red(x),w1),(Green(x),w2),(Round(x),w3),(Red(x)∧Round(x),w4)},

8For a precise definition of succinctness of a representation, we refer to [10,11]. Here we notice that the
length of a representation can be measured as the sum of the complexities of the formulas included in a concept
base.



where w1 6= w2 6= w3 6= w4 and w4 > w1 +w3. Take the epistemic state E = {Red(a),
Round(a),Green(b)}, i.e., we know that a is both red and round, while for b we just
know that its colour is green. The functions vA1, vA2, and vA3 are different. For instance,
vA1(E ,b) = vA3(E ,b) =w2, whereas vA2(E ,b) = 0, and vA1(E ,a) = vA2(E ,a) = w1 +w3,
whereas vA3(E ,a) = w4 > w1+w3. In A1, the qualities are independent, hence by match-
ing one of them, an object has a degree of categorisation greater than 0. This is not the
case of A2, where only combinations of colours and shapes are relevant (and vA1 and
vA2 coincide on these combinations). Finally vA3 is a super-addictive version of vA1, the
combination of the red and round qualities has a weight that is greater than the sum of
the weights of the single qualities.

Example 4. Suppose that we want to classify an individual a according to the dis-
ease that she may suffer. For instance, the concept of flu may be represented by
the following concept base: FLU = {(Fever(x),w1),(Nausea(x),w2),(Spots(x),−w3)},
where adding the symptom ‘spots’ significantly decreases the reliability of the clas-
sification under FLU, because it is a strong indication of chickenpox (e.g. assume
that w3 ≥ w1 + w2). Consider the epistemic states E = {(Fever(a),Nausea(a)} and
E ′= {(Fever(a),Nausea(a),Spots(a)}. We obtain that vFLU(E ,a)> vFLU(E ′,a), although
E ⊂ E ′. In this case we have then a non-monotonic behaviour.

4.3. Exemplar view

We show how a simplified version of the exemplar view can be represented in our ap-
proach. Although the proposed simplified version has a purely illustrative purpose, it
allows us to highlight some important aspects of the exemplar view and of our proposal.

Suppose to have a set E = {ε1, . . . ,εh} of exemplars. According to the exemplar
view, each exemplar is represented by a point in the space, i.e., E ⊆ Sn. To deal with
similarity using the same technique adopted in Section 4.2, we represent exemplars by
specific kinds of prototypes. More precisely, we associate to each εi = 〈q1, . . . ,qn〉 the
prototype πi = 〈(q1,1), . . . ,(qn,1)〉 that contains a single quality for each dimension ∆i
and where all the qualities are equally weighted, i.e., there is no information about the
salience of dimensions. Following Section 4.2, each πi is represented by the concept
base Ei = {(Q1(x),1), . . . ,(Qn(x),1)}. Furthermore, as the categorisation of each εi is
known, the set of exemplars E, as well as the set of concept bases E = {E1, . . . ,En}, is
partitioned by the concepts. For each concept C, it is then possible to identify the set EC ⊆
E containing all the exemplars of C and the corresponding EC ⊆ E. Note that exemplars
are then subject neither to typicality effects nor to categorisation indeterminacy.

The categorisation function of an object a under the concept C is computed in two
steps. Firstly, we compute the similarities of a with respect to all the exemplars in E (in
a given epistemic state E ). I.e., in our framework, we calculate vEi(E ,a) for all Ei ∈ E.
Then we aggregate these similarities to individuate the degree of categorisation of a
under a concept C. Different aggregators can be considered, e.g.:

(i) vC(E ,a) = min{vEi(E ,a) | Ei ∈ EC},

(ii) vC(E ,a) = ∑
Ei∈EC

{vEi(E ,a) | Ei ∈ EC}/|EC|,



(iii) vC(E ,a) = ∑
Ei∈EC

{vEi(E ,a)}− ∑
Ei∈E\EC

{vEi(E ,a)}.

The aggregators (i) and (ii) focus only on the exemplars classified under C, whereas (iii)
requires the access to all the available exemplars (as usual, in the exemplar view).

Firstly, notice that the exemplar view usually does not consider categorisation in-
determinacy. This allows for introducing newly classified objects among the exemplars
of a given concept. As suggested in Section 3, we may introduce a threshold to rule out
indeterminacy of classification under a given concept. However, nothing prevents objects
to exceed the categorisation threshold for several concepts. To avoid multiple categori-
sations, one could classify an object under the concept with the higher categorisation
degree. In this case, categorisation would necessarily require to access all the known ex-
emplars. However, one could assume categorisation indeterminacy also for exemplars,
i.e., one could keep track of the degrees of categorisation of an exemplar under all the
concepts and take into account these degrees in the vC functions.

Secondly, the similarity considered in the previous model only counts the qualities
that an object has in common with a given exemplar. Assume S2 = {red,orange,blue}×
{1kg,2kg,3kg} and ε = 〈red,1kg〉with the corresponding concept base E= {(Red(x),1),
(1Kg(x),1)}. Take the epistemic state E = {Blue(a),1Kg(a),Red(b),2Kg(b),Blue(c),
2Kg(c),Blue(d),3Kg(d)}. In this case, we obtain that vE(E ,a) = vE(E ,b) = 1 and
vE(E ,c) = vE(E ,d) = 0. However, intuitively, c seems closer to the prototype E than
d because c and d have the same colour, but the weight in E (1kg) is closer to the
weight of c (2kg) than to the weight of d (3kg). The distance defined on dimensions
encodes this information about the geometrical structure of qualities. Approaches based
on metric spaces, e.g., conceptual spaces and GCM, allow then for a much more pow-
erful treatment of similarity. Following our partitioning of the basic predicates into
dimensions, one could assume a distance defined between the predicates of a given
dimension and use this information in the concept bases corresponding to the ex-
emplars. For instance, by knowing d(1Kg,2Kg) and d(1Kg,3Kg), one could modify
the previous E= {(Red(x),1),(1Kg(x),1)} into E′ = {(Red(x),1),(1Kg(x),1),(2Kg(x),
1− d(1Kg,2Kg),(3Kg(x),1− d(1Kg,3Kg))} (assuming that the values of the distance
function are in [0,1]). In this case, although being 2kg heavy and being 3kg heavy are
not as important as being 1kg heavy for the categorisation, they still contribute by pro-
ducing some weight (and the contribution of being 2k heavy is bigger than the one of
being 3kg heavy). This information is manifestly onerous, however it actually grounds
the high expressive power of conceptual spaces and GCM.

Finally, note that our account is also open to manage partial information about both
objects (to be categorised) and exemplars. Partial information about objects can be di-
rectly modelled by the epistemic states. Partial information about exemplars can be mod-
eled by abstracting the prototypes. For instance, if the weight of the exemplar ε is not
known, as it may not be relevant to categorise ε under its concept, then the previous E
could be modified into E′′ = {(Red(x),1)}, i.e., the weight does not influence the degree
of similarity with ε . Analogously, if one just knows that the weight of ε is 1kg or 2kg,
and this is enough to classify the exemplar under its concept, E can be modified into
E′′′ = {(Red(x),1),(1Kg(x)∨2Kg(x),1)}.



5. Possible extensions

We conclude by discussing a number of possible extensions of the use of concept bases
to represent concepts. A detailed treatment of these points is left to a future dedicated
work. Both the definitions of the epistemic state and of the concept base are quite general
and they permit to represent a variety of information relative to a categorisation task. In
general, we view the epistemic state E as the information available for the categorisation
task and the concept base C as the information that is needed for the categorisation task.
For instance, the epistemic state may include formulas that express correlations between
qualities, e.g., E = {Q1(a),∀x(Q1(x)→ Q2(x))}. In this case, E represents the situation
in which an agent explicitly knows that a has Q1 and she may infer, by knowing the
correlation ∀x(Q1(x)→Q2(x)), that a has also Q2. The inferred information can be used
to perform a categorisation task. Moreover, the epistemic state can encode various levels
of uncertainty about the qualities of an object, e.g., by means of the disjunction Q1(a)∨
Q2(a)∨Q3(a). Whether the uncertain information is sufficient for a categorisation task
depends on the accuracy demanded by the concept base.

The expressiveness of the formulas in the concept base enables also to model re-
lational concepts. E.g., consider the concept base C = {(∃y(Eat(x,y)∧White(y)),w1),
(∃y(Drink(x,y)∧Red(y)),w2)}. In this case, the categorisation of an object a under C
relies exclusively on qualities of objects that are related to a by the Eat or the Drink
relation. I.e., the features that are relevant for categorisation concern how a is linked to
some objects with given qualities. Admitting universally quantified formulas in the con-
cept base raises an interesting question about the nature of universal quantification. For
instance, assume to include in a concept base C the weighted formula (∀y(Eat(x,y)),w)
or (∀y(White(y)→ Eat(x,y)),w). One possibility is to view universal quantification in a
substitutional way, that is, an universal quantification holds with respect to the epistemic
state E because it applies to all the instances appearing in E . Accordingly, this entails
that the categorisation under C depends on the available information about the objects
explicitly mentioned in the epistemic state.

An important issue, that we leave open here, is whether a concept C may be
included in the concept base of another concept C′ and whether categorisation (un-
der a concept) statements may be part of an epistemic state. Apparently, traditional
definitions of concepts permit that, e.g., a human is a rational animal. In princi-
ple, we may include concepts as weighted formulas in a concept base, e.g. HUMAN =
{(RATIONAL(x),w),(ANIMAL(x),w′)}. A first difficulty concerns the fact that, in general,
objects are classified under concepts with given degrees. One then needs to combine the
weights of the formulas and the degrees of categorisation under the concepts, that may
affect the weights of the formulas. For instance, although the weight w of RATIONAL(x)
is high, the degree of categorisation under RATIONAL of the object a could be very low.
A second problem is to understand how a concept base that contains another concept
deals with the information about that concept. For instance, one may assume that the
concept bases of RATIONAL and of ANIMAL are imported in the concept base of HUMAN.
If the weights of the formulas in RATIONAL and ANIMAL are not modified in HUMAN, then
the concept base of HUMAN is simply the union of the two concept bases. This amounts
to requiring two classification tasks, one under animals and one under rational, that
are independent of each other. By contrast, the classification tasks under RATIONAL or
ANIMAL may be modified when interpreted as part of the concept HUMAN; for instance,



the weights of the qualities that are required for categorising animals may need to be ad-
justed when categorising humans. The problem of combining concepts in a cognitively
significant way is a difficult problem, related to compositionality, that we leave open
here. We only stress that, by means of the representation in terms of concept bases, a
number of possible combination strategies may be defined. Moreover, note that some
concepts seem to require both a concept combination and a relational property. Consider
the case of the concept carnivorous. Its concept base shall include a weighted proposition
(∃y(Eat(x,y)∧ANIMAL(y)),w), which mention the concept ANIMAL and the Eat relation.

To conclude, we developed a framework to represent cognitive views of concepts by
means of weighted logical formulas. We faithfully represented the prototype view and
the exemplar view, by capturing their categorisation functions. A final point for future
work is dedicated to extending this approach to larger classes of categorisation functions.
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