
Modelling Equivalent Definitions of Concepts

Daniele Porello

Institute of Cognitive Sciences and Technologies, CNR
daniele.porello@loa.istc.cnr.it

Abstract. We introduce the notions of syntactic synonymy and referential syn-
onymy due to Moschovakis. Those notions are capable of accounting for fine-
grained aspects of the meaning of linguistic expressions, by formalizing the Fregean
distinction between sense and denotation. We integrate Moschovakis’s theory
with the theory of concepts developed in the foundational ontology DOLCE, in
order to enable a formal treatment of equivalence between concepts.

1 Introduction

We place our analysis of concepts within the foundational ontology DOLCE [2]. Con-
cepts are there intended to model classification of entities of a domain according to
some relevant perspectives, in case the intensional aspect of the classification matters
for knowledge representation. For example, in legal domains and in social ontology,
concepts are fundamental for representing roles such as president, delegate, and stu-
dent [2]. Although the extension of the role “student” provides the class of entities that
can be classified as students, it is the intensional aspect of “student” that specifies the
relevant information about the meaning of “student”, i.e. the conditions that are nec-
essary for classifying something as a student. Concepts are indeed intended to capture
those intensional aspects. The motivation for using DOLCE is that it formalizes a rich
theory of concepts that allows for relating conceptual information with other types of
information concerning the entities of a given domain. In DOLCE, concepts are defined
by means of descriptions, that are intended as semantic entities that are used to refer
to concepts. Since descriptions are our way to access concepts, we are lead to focus
on the meaning of the description that is associated to the concept. In Fregean terms,
we are not only interested in the denotation of the definitions of concepts, but also in
their sense, that is, in the way in which the denotation is given. Consider the following
example. According to the Italian Constitution, the “President of the Italian republic”
is also the “President of the Superior Judicial Court”. Although the two descriptions
refer to the same individual, we want to say that they are referring to different concepts
because they express distinct senses.

We introduce a language for expressing definitions of concepts and we discuss a
number of equivalence relations between definitions. Our approach is based on the cal-
culus of meaning and synonymy developed by Moschovakis [6, 1]. This calculus pro-
vides a formal interpretation of the crucial distinction made by Frege between sense
and denotation. The calculus is based on a typed system for expressing the meaning of
natural language expressions, in the style of the Montague grammar [3, 4]. We will inte-
grate the calculus of meaning and synonymy with the treatment of concepts in DOLCE.

We shall see how to deploy the calculus of meaning and synonymy to decide whether
two descriptions of concepts are equivalent, i.e. they define the same concept. Since
the calculus is based on type theory, it is not embeddable in first order logic, therefore,
we view it as an external module that interacts with DOLCE, rather than a part of the
ontology. This is motivated by the fact that a first-order theory such as DOLCE is not
sufficiently expressive to talk about the meaning of first-order terms and formulas.

Possible applications of a formal theory of equivalence of concepts concern the
possibility of comparing the intensional aspects of conceptualizations provided by two
agents’ theories. The remainder of this paper is organized as follows. The next section
presents the formal grammar based on type theory and the background of the calculus of
meaning and synonymy developed by Moschovakis. Section 3 discusses the application
of the calculus of synonymy with DOLCE.

2 Formal background

We present the typed calculus of acyclic recursion Lλar defined by Moschovakis. We
refer to [7, 6, 5, 1] for the details. The idea of a typed system to model natural lan-
guage semantics can be briefly summarized as follows. The elements of a vocabulary
(e.g. words in natural language) are associated to terms of a certain type. The type en-
codes the properties that are required for composing complex meanings, while the term
specifies the semantic contribution of the element of the vocabulary. For instance, the
word “red” is associated to the type of functions from entities to truth values. The term
associated to “red” is the specific function that associates “true” to red entities and false
otherwise.

As in Montague grammar, types are defined recursively from the basic types e for
entities and t for truth values: TYPES ::= e | t | (τ → τ ′)

We assume a finite set of constantsK, the vocabulary of our semantic grammar. The
typing relation: c : τ indicates that c has type τ . Given a choice of K, the set of terms
of the language of acyclic recursion Lλar(K) is defined as follows. For each type τ , we
assume two distinct infinite sets of variables: pure variable: vτ0 , vτ1 , ..., and recursion
variable or locations: pτ0 , pτ1 , ... Pure variables range over the domains of their types,
whereas location variables are only assigned to terms.

The main innovation in Moschovakis’s calculus is the acyclic recursion construc-
tion. Given a sequence of location variables, p1, . . . , pn and a set of terms A1, . . . , An,
a system of assignments is an expression {p1 := A1, . . . , pn := An} that means that a
termAi is assigned to the position pi. The acyclic recursion is a term written as follows:

A0 WHERE {p1 := A1, . . . , pn := An}

The meaning of this statement is that, once one sets p1 as A1, . . . , pn is An, then
one hasA0. The condition on the recursion construction is that its system of assignment
must be acyclic [6].

Definition 1. The set of terms of Lλar(K) is defined as follows:

TERMS := c | v | p | B(C) | λ(v)(B) | A0 WHERE{p1 := A1, . . . , pn := An}

with the following conditions:

T1 If c is a constant of type τ , then c is a term of type τ , c : τ ;
T2 Variables of type τ are terms of type τ , in particular v : τ and p : τ ;
T3 If C : τ and B : τ → τ ′, then B(C) : τ ′;
T4 If B : τ ′ and v is a pure variable of type τ , then λ(v)(B) : τ → τ ′;
T5 If for n ≥ 0, Ai : τi and p1, ..., pn are distinct locations pi : τi such that the system

of assignments {p1 := A1, . . . , pn := An} is acyclic, then

A0 WHERE {p1 := A1, . . . , pn := An} : τ0

For the sake of example, we treat a very simple fragment of English (Figure 1). We
fix the set of constants K = { president, of, superior judicial council, italy, not, and,
the, }1 Next we associate semantic types to words.

Constants Type
president e → t
of ((e → (e → t)) → (e → t)
superior judicial council e → t
italy e
not t → t
and, or t → (t → t)
the (e → t) → e

Fig. 1. Grammar

By means of this simple grammar, we can compose terms to obtain complex terms
and to check their types. For instance, we can compute that the string in natural lan-
guage “the president of Italy” has type e, that is, it denotes an individual of type e.
A fundamental preliminary step in order to move from natural language sentences to
their correct semantic types and hence to their logical forms is to order the functional
compositions in the correct way. In a number of approaches, this is done by means
of a calculus that accounts for the syntactic structure of the sentence as providing the
instructions to build the semantics [4]. For lack of space, we cannot enter the details
here. For instance, we shall simply assume that it is possible to obtain the right order
of applications from the order of words in natural language. Once we have the correct
order of applications, we can compute the semantic of “the president of Italy” in a fully
compositional way. In this case, functional applications (T3) is enough to obtain that
the expression “the president of Italy” has to denote an element of e.2 Consider now
the term corresponding to “president of Italy”, that is (of(italy)) (president). Its type
is e → t, since it denotes a class of entities. We can exemplify the acyclic constructor
as follows. We allow also for possibly empty assignments, thus (of(italy)) (president)
can also be written as follows:

(of(italy)) (president) WHERE { } : e→ t

(of(p1)) (president) WHERE {p1 := italy} : e→ t

1 For the sake of simplification, we treat “Superior Judicial Council” as single lexical entry.
2 This step is called “semantic rendering” in [6].

(of(p1)) (p2) WHERE {p2 := president, p1 := italy} : e→ t

2.1 The calculus of synonymy

Firstly, we introduce a syntactic notion of equivalence of terms. We say that A and B
are congruent, A ≡c B, if and only if one can be obtained from the other by alphabetic
change of bound variables (of both kinds) and re-ordering of the assignment within the
acyclic recursion. For instance, (of(p2))(p1) WHERE {p2 := president, p1 := italy} is
congruent with (of(p3))(p1) WHERE {p3 := italy, p1 := president}.

Congruent terms are mere syntactic variants of one another, for that reason this is
the strictest form of equivalence between terms. We are going to define the notions of
syntactical synonymity and referential synonymity. The notion of syntactic synonymy is
defined in [6] in terms of congruence of canonical forms. Canonical forms are defined
by introducing a reduction calculus on terms which allows for computing effectively the
canonical forms of terms [6, cf. par. 3.13]. The notion of canonical form provides the
following definition of syntactic synonymity. Two constants will not be syntactically
synonymous since they have non-equivalent canonical forms. For instance, “Italy” and
the “Supreme Judicial Court” are not syntactically synonymous.

Definition 2 (Syntactic synonymity). Two terms A and B are syntactically synony-
mous, A ≈s B if and only if their canonical forms are equivalent:

A ≈s B ⇔ cf(A) ≡c cf(B)

Example 1 (Canonical forms and syntactic synonymity). The canonical form of the
term (of(italy)) (president) is given by: (of(p1)) (p2) WHERE {p2 := president, p1 :=
italy}. The term that expresses the meaning of “president of the Supreme Judicial
Council” is: (of(sjc)) (president). Its canonical form is: (of(p1)) (p2) WHERE {p2 :=
president, p1 := sjc}.

The two canonical forms are not congruent, simply because they contain distinct
constant terms: italy and sjc. Hence, although the two descriptions refer to the same
individuals, the two terms are not syntactically synonymous.

Syntactic synonymity actually does not account for equivalence of meanings of the
components. We shall see how to cope with that by means of the notion of referential
synonymy. Referential synonymy is based on the notion of referential intension of a
term, which intuitively models the process that computes the denotation of a term in
a given model. This view corresponds to the Fregean idea that the “sense” of an ex-
pression is a way to compute its denotation [8]. In the following definition, we write
den(A)(g) to indicate the denotation of the term A under the assignment g.

Definition 3. A is referentially synonymous with B, A ≈r B, if and only if: (1) There
exist suitable terms A0, B0, ..., An, Bn such that:

A⇒ A0 WHERE {p1 := A1, . . . pn := An}
B ⇒ B0 WHERE {p1 := B1, . . . pn := Bn}

(2) |= Ai = Bi, that is, for all assignments g, den(Ai)(g) = den(Bi)(g)

Referential synonymy takes into account the meaning of the constants that occur in
a term. For instance, take two individual constants a and b that have the same denota-
tion: let g be an assignment to the variables, den(a)(g) = den(b)(g) are not syntacti-
cally synonymous, since they have non-equivalent canonical forms, although they are
referentially synonymous, since their denotations coincide.

Example 2 (Referential synonymy). We can see that “the president of Italy” and “the
president of the Supreme Judicial Court”, although denotationally equivalent, are not
referentially synonymous.

The expressions are rendered by (of(italy))(president) and (of(sjc))(president),
whose canonical forms are:

(of(p1)) (p2) WHERE {p2 := president, p1 := italy}

(of(p1)) (p2) WHERE {p2 := president, p1 := sjc}

.
The terms are not referentially synonymous because the denotation of italy and sjc

are not the same. By contrast, suppose K contains unemployed and not-employed.
If we treat them as two constants, their denotations coincide, thus they are indeed ref-
erentially synonymous. Actually, in order to view them as referentially synonymous,
we need to classify “not employed” as a single lexical entry. This amounts to deciding,
at the level of semantic rendering, for unemployed and not-employed, whether the
associated functions compute their reference by a different computation or not.

3 Application to concepts

In DOLCE, concepts are defined by descriptions. For instance, different agents may use
different descriptions of the same concept, or a concept may be introduced by means of
a description at a certain time. By relating concepts and descriptions, the view of DOLCE
is that concepts manifest a certain dependence on the agents that use them to classify
entities. For that reason, it is important to discuss notions of equivalence between de-
scriptions. We only sketch the application of the notion of referential synonymy to the
theory of concepts of DOLCE. Following [2], besides assuming a category for concepts
C, we assume a category of descriptions DS. The categories are related by means of the
relation of definition DF(x, y): a description x defines a concept y.

We assume that every element x of the category DS is a name for a term tx in
a suitable fragment of the language of acyclic recursion. Moreover, we assume that
(syntactically) distinct terms are associated to distinct descriptions. We introduce two
binary relations between descriptions∼r and∼s: they are relational constants in DOLCE
that are intended to represent ≈r and ≈s, respectively. Since ≈r and ≈s are not fist-
order relations, we do not attempt to provide a definition within DOLCE. We shall view
the calculus of meaning and synonymy as an external (decidable) module that allows
for computing whether ≈r and ≈s hold. That is, we are putting an external constraint
on the modelsM of DOLCE that forces a ∼r b and a ∼s b to hold inM iff ta ≈r tb
and ta ≈s tb are computable in the calculus of meaning and synonymy.

We can now define when two descriptions define the same concept. Two descrip-
tions defines the same concept if they are referentially synonymous (a1). Moreover, the
same concept cannot be defined by two descriptions that are not referentially synony-
mous (a2).

a1 x ∼r y ∧DF (x, v) ∧DF (y, w)→ v = w

a2 DF (x, v) ∧DF (y, w) ∧ v = w → x ∼r y

Even if two terms are denotational equivalent, but not referentially synonymous,
they may still define two different concepts. For instance, as a theorem we can infer that
although (of(italy)) (president) and (of(sjc)) (president) are denotationally equivalent,
they define different concepts. Suppose that d1 is the name of (of(italy)) (president)
and d2 is the name of (of(sjc)) (president). That is, d1 and d2 are elements of the
category DS. One can establish in the calculus of meaning and synonymy [6] that

(of(italy)) (president) 6≈r (of(sjc)) (president)

Thus, we have that d1 6≈r d2, that implies for our external constraints, that d1 6∼r d2.
Then, if DF (d1, v) and DF (d2, w), by axiom 2, v and w must be distinct concepts.

By contrast, a term that represent the word student in English and a term that repre-
sent the word student in Italian, say student and studente can be shown to be referen-
tially synonymous, although they are not syntactically synonymous.

Bibliography

[1] E. Kalyvianaki and Y. N. Moschovakis. Two aspects of situated meaning. In Logics for
Linguistic Structures, pages 57–86. Mouton de Gruyter, 2008.

[2] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and N. Guarino. So-
cial roles and their descriptions. In Proc. of the 6th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR-2004), pages 267–277, 2004.

[3] R. Montague. The proper treatment of quntification in ordinary english. Formal Semantics:
The Essential Readings, pages 17–34, [1973]2008.

[4] R. Moot and C. Retoré. The logic of categorial grammars: a deductive account of natural
language syntax and semantics, volume 6850. Springer, 2012.

[5] Y. N. Moschovakis. Sense and denotation as algorithm and value. In J. Oikkonen and
J. Väänänen, editors, Logic Colloquium ’90: ASL Summer Meeting in Helsinki, pages 210–
249. Springer-Verlag, 1993.

[6] Y. N. Moschovakis. A logical calculus of meaning and synonymy. Linguistics and Philoso-
phy, 29:27–89, 2006.

[7] Y. N. Moschovakis. A logic of meaning and synonymy, 2010. Course notes, ESSLLI, Copen-
hagen.

[8] C. Penco and D. Porello. Sense as proof. In New Essays in Logic and Philosophy. College
Publications, London, 2010.

