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Abstract. We propose an analysis of the impossibility results in
judgement aggregation by means of a proof-theoretical approach to
collective rationality. In particular, we use linear logic in order to
analyse the group inconsistencies and to show possible ways to cir-
cumvent them.

1 Introduction

Judgement Aggregation (JA) [4, 5], a recent topic in social choice
theory, is concerned with the aggregation of logically connected
judgements into a collective rational outcome, by means of a proce-
dure that respects certain fairness desiderata. Recently, JA has been
discussed also in AI and multiagent systems. Several results in JA
show that it is not possible to aggregate individual judgements, usu-
ally expressed in classical propositional logic, by means of proce-
dures that balance fairness and efficiency. For instance, the majority
rule faces the so called discursive dilemmas [4]: even if individual
judgements are rational, the outcome that we obtain by majority may
not be. In this paper, we approach discursive dilemmas by using the
precise analysis of proofs provided by linear logic (LL) [2]. We will
radically depart from a standard assumption in JA, namely, that in-
dividual and collective rationality have to be of the same type. 2 By
contrast, we will assume that individuals reason classically and we
will study which is the notion of rationality that may consistently
correspond to group reasoning (wrt majority). In particular, we will
show that LL provides a notion of group reasoning that views dis-
cursive dilemmas as possible mismatches of the winning coalitions
that support logically connected propositions. Section 2 contains the
approach of LL to proof-theory. Section 3 contains our analysis of
dilemmas. In Section 4, we present our theoretical result. Section 5
concludes.

2 Sequent calculi

LL provides a constructive analysis of proofs by taking into account
the actual use of hypotheses of reasoning. In particular, the structural
rules of sequent calculus weakening and contraction are no longer
valid in LL, as they would allow us to delete or to add arbitrary
copies. By dropping them, the rules that define the connectives are
split into two classes: the additives, that require the contexts of the
sequent to be the same, and the multiplicatives, that make copies of
the contexts. Accordingly, in LL there are two different types of con-
junction, ⊗ (tensor) and & (with), and two types of disjunctions, `
(parallel) and ⊕ (plus). Let A be a set of atoms, the language of LL
is defined as follows

LLL ::= A |∼ L | L⊗ L | L` L | L⊕ L | L& L
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2 The discussion of LL for JA points at a generalisation of the approach in

[1], because we deal with non-monotonic consequence relations.

The sequent calculus is presented in the following table. We shall
assume that (P) always holds. If we assume (W) and (C), than the
two rules for the two conjunction coincide. In that case, ⊗ and &
collapse and the meaning of the conjunction is the classical one. The
same holds for disjunctions. We shall use the usual notation, a∧b and
a ∨ b, when we assume that the structural rules hold and we denote
LCL the language of classical logic.

ax
A � A

Γ, A � Δ Γ′ � A,Δ′
cut

Γ,Γ′ � Δ,Δ′

Negation

Γ � A,Δ
L ∼

Γ,∼ A � Δ

Γ, A � Δ
R ∼

Γ �∼ A,Δ

Multiplicatives

Γ, A,B � Δ ⊗L
Γ, A⊗B � Δ

Γ � A,Δ Γ′ � B,Δ′
⊗R

Γ,Γ′ � A⊗B,Δ,Δ′

Γ, A � Δ Γ′, B � Δ′
`L

Γ,Γ′, A`B � Δ,Δ′
Γ � A,B,Δ

`R
Γ � A`B,Δ

Additives

Γ, Ai � Δ
&L

Γ, A0&A1 � Δ

Γ � A,Δ Γ � B,Δ
&R

Γ � A&B,Δ

Γ, A � Δ Γ, B � Δ ⊕L
Γ, A⊕B � Δ

Γ � Ai,Δ ⊕R
Γ � A0 ⊕A1,Δ

Structural Rules (also on the right)

Γ, A,B,Γ′ � Δ
P

Γ, B,A,Γ′ � Δ

Γ, A,A,� Δ
C

Γ, A � Δ

Γ � Δ
W

Γ, A � Δ

The idea of this work is to model group reasoning by using the linear
logic awareness of contexts and inferences. We shall view coalitions
of agents that support formulas as contexts in the sequent calculus.
For example, if the group accepts a conjunction of two sentences, this
might have two interpretations: there exists a single coalition Γ such
that Γ � a and Γ � b, therefore Γ � a& b; or there are two different
coalitions such that Γ � a and Δ � b, therefore Γ,Δ � a⊗ b.

3 The model

Let N be a (finite) set of agents and X an agenda, namely, a (fi-
nite) set of propositions in the language LL of a given logic L that
is closed under complements, i.e. (non-double) negations. A judge-
ment set J is a subset of X such that J is (wrt L) consistent (J �L ∅),
complete (for all φ ∈ X , φ ∈ J or ∼ φ ∈ J) and deductive closed (if
J �L φ and φ ∈ X , φ ∈ J). Let L(X ) the set of all judgement sets
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on X wrt L. A profile of judgement sets J is a vector (J1, . . . , Jn).
We assume that individuals reason in CL (just like in standard JA).
Different logics may model group reasoning. For example, group rea-
soning in CL is treated in standard JA. We focus on the case in which
group reasoning is modelled by LL. Thus, we need to adapt the no-
tion of aggregator, by adding a translation function from CL into LL.
Given an agenda X ⊂ LCL, the agenda X ′ ⊂ LLL is defined by
the following additive translation: if φ ∈ X , then add(φ) (replace
∧ with & and ∨ with ⊕) is in X ′. An aggregator is then a function
F : CL(X )n → LL(C) such that F is the composition of a stan-
dard aggregator F ′ : CL(X )n → P(X ) and a translation function
t : P(X ) → P(X ′), such that t(J) = {add(φ) | φ ∈ J}.3 For ex-
ample, the majority rule is M(J) = t({φ ∈ X | |Nφ| > n/2}) with
Nφ = {i | φ ∈ Ji}. Nφ is a winning coalition Wφ if φ ∈ M(J).
We model group reasoning as follows. We assume non-logical ax-
ioms Wφ � φ for any φ ∈ F (J). Intuitively, the group reasons from
accepted formulas keeping track of their winning coalitions.

Definition 1 (Group reasoning) We say that the group infers a for-
mula φ ∈ LL according to L iff, for some W1, ...,Wm, there is a
proof in L from some of the axioms W1 �L φ1, . . . ,Wm �L φm to
W1, ...,Wm �L φ.

Note that the group is inconsistent iff, for some W1, ...,Wm, the se-
quent W1, . . . ,Wm �L ∅ is derivable in L.

3.1 An analysis of discursive dilemmas

Consider the following example of discursive dilemma on the agenda
{a, b, a ∧ b,∼ a,∼ b,∼ (a ∧ b)}.

a a ∧ b b ∼ a ∼ (a ∧ b) ∼ b
i1 1 1 1 0 0 0
i2 1 0 0 0 1 1
i3 0 0 1 1 1 0

maj. 1 0 1 0 1 0

Each agent has a consistent set, however, by majority, the collective
set {a, b,∼ (a ∧ b)} is not. We can infer the contradiction in the
collective by reasoning in CL as follows.

i1, i2 � a
W

i1, i2, i3 � a

i1, i3 � b
W

i1, i2, i3 � b
R∧

i1, i2, i3 � a ∧ b

We start with non-logical axioms i1, i2 � a and i1, i3 � b. By weak-
ening, we introduce the conjunction of a and b by using the same
coalition. Moreover, the group can infer ∼ (a∧b) as we have the ax-
iom: i2, i3 �∼ (a ∧ b). Therefore, the group is inconsistent wrt CL,
as we can prove a ∧ b and ∼ (a ∧ b) by using the Wi. This entails,
by (cut), that we can prove ∅ from some Wi.

If we drop W and C, the contradiction is no longer derivable. If the
group reasons in LL, the non-logical axioms are: i1, i2 � a, i1, i3 � b
and i2, i3 �∼ (a& b). The only way the group can infer a⊗ b is by
using two different coalitions:

{i1, i2} � a {i1, i3} � b
R⊗{i1, i2}, {i1, i3} � a⊗ b

However, a⊗b and ∼ (a&b) are not inconsistent in LL, because a⊗
b,∼ (a& b) �LL ∅. LL provides then a reasoning method that keeps
track of the fact that there is no winning coalition for a∧b, while there
are winning coalitions for a and b. Accordingly, we cannot infer a&b
from any Wi, since there is no single coalition that supports both a
and b.
3 The translation reflects our view: Multiplicatives combine coalitions,

whereas additives refer to a same coalition.

4 Consistency wrt group reasoning in LL

According to results in JA [5], the majority rule leads to inconsis-
tency iff the agenda contains a minimally inconsistent set Y such that
|Y | ≥ 3 (e.g. {a, b,∼ (a∧b)}). Moreover, if Y ⊂ M(J), there must
be at least three different winning coalitions supporting the formulas
in Y . We prove that majority is always consistent wrt LL, provided
our additive translation. The key property is the following: (F2) if
we restrict to additive linear logic (ALL) (& and ⊕), every provable
sequent contains at most two formulas (e.g. A � B) [3]. 4

Theorem 1 For every X ∈ LCL, if every Ji is consistent wrt CL,
and n is odd, then the majority rule is always consistent wrt group
reasoning in LL.

Proof. If M(J) is consistent wrt CL, then it is consistent wrt LL: if
M(J) �CL ∅, then t(M(J)) �LL ∅ (as in LL we use less rules).
Suppose there is a minimally inconsistent Y ⊂ X s.t. |Y | ≥ 3. Let J

be a profile s.t. Y ⊆ M(J). We show that the group is consistent wrt
LL on t(Y ). For any φi ∈ t(Y ), we have axioms Wi � φi. All the
formulas in t(Y ) are additive, thus, by property (F2), the only ways
to prove ∅ from the formulas in t(Y ) are: 1) to prove A � ∅, with
A =

˘
i φi, φi ∈ Y , and 2) to prove B,C � ∅, where B =

˘
i φi

and C =
˘

j φj , with φi �= φj ∈ t(Y ). The only way to prove
A =

˘
i φi from some winning coalitions Wi is by means of a single

W , s.t. W � φi for every φi ∈ t(Y ), against the consistency of each
Ji. The only way to prove B and C (i.e. B ⊗ C) from some Wi is
to have two winning coalitions W and W ′ s.t. W supports all φi and
W ′ supports all φj . Again, this is against the consistency of each Ji,
as there must be an i supporting the full Y .�

5 Conclusion

We have shown that majority is consistent wrt a notion of group rea-
soning defined in LL. A reasoning method based on LL has several
independent applications as reasoning on bounded resources and as
a logic of computation [2]. Here, we have seen that LL provides a
notion of group rationality that views discursive dilemmas as mis-
matches of winning coalitions wrt majority rule. The significance of
applying proof-theoretical methods to JA is that they link possibil-
ity results to a fine-grained analysis of reasoning and, by inspecting
logical rules, we may draw a new map of possibility/impossibility
results. A similar treatment can be developed also for preference ag-
gregation and can be generalised to classes of aggregators. Future
work shall investigate this aspects.
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4 If we inspect the additive rules, we see that they cannot add any new propo-
sition. Note that (F2) entails that in ALL there are no minimal inconsistent
sets of size greater than 3. Thus majority is safe for any ALL agenda. This
result is of an independent interest as it provides a new possibility result
that links language restrictions to reasoning methods.
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