
Modelling Combinatorial Auctions in Linear Logic

Daniele Porello and Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Abstract

We show that linear logic can serve as an expressive frame-
work in which to model a rich variety of combinatorial auc-
tion mechanisms. Due to its resource-sensitive nature, linear
logic can easily represent bids in combinatorial auctions in
which goods may be sold in multiple units, and we show
how it naturally generalises several bidding languages fa-
miliar from the literature. Moreover, the winner determina-
tion problem, i.e., the problem of computing an allocation of
goods to bidders producing a certain amount of revenue for
the auctioneer, can be modelled as the problem of finding a
proof for a particular linear logic sequent.

Introduction
A combinatorial auction (CA) is a mechanism for one agent
(the auctioneer) to sell a set of goods to a number of other
agents (the bidders). While there are several different types
of CAs, in the standard mechanism each bidder first speci-
fies how much they are prepared to pay for any given sub-
set of the set of goods on auction, and the auctioneer then
chooses an allocation of goods to bidders that will maximise
the sum of payments collected. The advantage of a combi-
natorial auction over a sequence of simple auctions (one for
each individual good) is that it solves the socalled exposure
problem: in a sequence of simple auctions it would be dif-
ficult for a bidder to decide how much to bid for item A, if
she is only interested in obtaining A and B together; in a
CA she can directly express this preference and there is no
risk of getting stranded with just A.

While the idea is intuitively appealing, the CA frame-
work also raises a number of challenging research questions:
How can we incentivise bidders to truthfully declare their
valuations (cf. game theory, mechanism design)? How can
we solve the combinatorial optimisation problem of com-
puting the best allocation given a set of bids (cf. algorith-
mics)? How do we best represent the input of the bidders (cf.
knowledge representation)? Particularly the first two types
of questions have received (and continue to receive) a lot of
attention in the literature. The state of the art is reflected in
the recent collection edited by Cramton, Shoham, and Stein-
berg (2006). In this paper, we shall focus on the challenges
for knowledge representation raised by CAs.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Knowledge representation techniques play an important
role in the design of bidding languages. A bid is an en-
coding of a bidder’s (declared) valuation function, which
maps bundles (subsets of the set of goods on auction) she
might receive to the prices she is prepared to pay for them.
As the number of conceivable bundles grows exponentially
with the number of goods, we require a compact representa-
tion language. Several such languages have been proposed,
e.g., the socalled XOR- and the OR-languages (Nisan 2006)
and languages based on weighted formulas (Boutilier and
Hoos 2001). (In fact, as bidding is a form of communicating
one’s preferences, much of the recent work on preference
modelling (Goldsmith and Junker 2008) is relevant to this
problem.) Importantly, all of the aforementioned bidding
languages are languages for single-unit CAs, while many
real-world auctions are in fact multi-unit CAs, where there
may be several indistinguishable copies of the same good.

Our first objective will be to overcome this limitation and
to design generalisations of standard bidding languages for
multi-unit CAs in a systematic and principled way. A natu-
ral basis for such an undertaking is the framework of linear
logic (LL). LL is a resource-sensitive logic: to prove a con-
clusion from a set of premises, each premise can be used at
most once (Girard 1987; 1995). This feature makes it pos-
sible to distinguish, for instance, whether a bidder receives
one or two copies of the same good, and bidders can quote
different prices for these situations.1

In fact, we can do much more than that: LL turns out
to provide an appropriate framework in which to model a
variety of CA mechanisms—and modelling is not restricted
to the representation of bids. Our contribution is threefold:

• We show that LL can serve as a basis for designing pow-
erful bidding languages for CAs. Our approach subsumes
several existing languages in a single formal framework
and adds a number of new features. Specifically, we can
model the availability of goods in multiple units and we
can distinguish different types of goods, such as goods
that are or are not reusable (by the same bidder) or that
are or are not sharable (amongst several bidders).

• We show that also the winner determination problem

1In a somewhat related context (negotiation), similar points
have previously been made by Harland and Winikoff (2002) and
Küngas and Matskin (2004).

71

Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

(WDP), i.e., the problem faced by the auctioneer of which
goods to award to which bidder so as to maximise rev-
enue, has a natural counterpart in the logical framework.
Specifically, we show how to build an “allocation se-
quent” from the goods owned by the auctioneer, the
bids received, and the amount of revenue hoped for, and
demonstrate that any proof of this sequent corresponds to
an allocation yielding the desired revenue. The WDP then
reduces to a series of calls to a LL theorem prover.

• Going beyond standard CA mechanisms, we also show
how to model more powerful auction mechanisms in LL.
This includes, in particular, mixed auctions (Cerquides
et al. 2007), in which bidders and auctioneer exchange
transformations of goods rather than plain goods. Gener-
alising even further, we sketch what we call formula auc-
tions, in which the auctioneer sells arbitrary LL formulas
to the bidders (roughly speaking, in standard CAs these
formulas are conjunctions of atomic propositions, while
in mixed auctions they are certain types of implications).

To exemplify our approach, consider the OR-language. An
OR-bid is a list of bundles of goods labelled with a price
(socalled atomic bids): 〈B1, w1〉 OR · · · OR 〈B�, w�〉. This
bid encodes a valuation function v: a bundle X of goods is
said to satisfy a set of atomic bids, if it is a superset of each
of the bundles of the atomic bids and if those bundles do not
overlap; v(X) is defined as the maximal sum of prices of any
set of atomic bids satisfied by X . Later, we will show how
to map a multi-unit variant of the OR-language into LL. For
example, if bidder 5 wants to express that she will pay one
monetary unit (u) for two copies of p and three monetary
units for obtaining a copy of p together with a copy of q,
then she can submit the following bid (the LL connectives,
such as ⊗ and �, will be introduced in the next section):

[(p5 ⊗ p5) � u] ⊗ [(p5 ⊗ q5) � (u ⊗ u ⊗ u)]

Now, from p5 we cannot prove anything, from two copies of
p5 we can prove u, from p5 and q5 we can prove u3, from
two copies of p5 and one q5 we can still only prove u3, and
from three copies of p5 and one q5 we can prove u4.

Let us also briefly sketch our approach for modelling the
WDP. Each bid is represented by a formula BIDi, like the
one shown above. The multiset of goods owned by the auc-
tioneer can be represented by a (multiplicative) conjunction
of these goods, e.g., GOODS = p ⊗ p ⊗ q ⊗ r ⊗ r ⊗ r. We
also need a formula that expresses that each of these items
can go to (at most) one of the bidders. For example, for (one
copy of) p and a group of three bidders, this formula would
be (p � p1) & (p � p2) & (p � p3), using the additive
conjunction operator of LL. Let MAP be the (multiplicative)
conjunction of formulas of this kind for each copy of each
good. Then the auctioneer can achieve a revenue of k if and
only if there exists a proof for the following sequent:

GOODS, MAP, BID1, . . . , BIDn � uk

Moreover, the allocation achieving that level of revenue can
be read off the proof. Solving the WDP then amounts to
finding the largest value k such that the above sequent can
be proved, and then extracting the corresponding allocation

from that proof. We stress that we do not intend to propose
LL as an algorithmic framework for solving the WDP. This
will continue to require highly specialised combinatorial op-
timisation algorithms. Instead, we view this embedding as
an attractive conceptual framework in which to model and
understand a wide variety of different CA mechanisms and
bidding languages in a principled manner.

The remainder of this paper is organised as follows. Af-
ter recalling the basic concepts of LL, we first show how to
embed (multi-unit variants of) three important bidding lan-
guages into LL. We then show how to model the problem
of finding a suitable allocation as the problem of finding a
proof for a LL sequent of the kind outlined above and we
provide a formal proof of this correspondence. Before con-
cluding, we discuss a number of possible extensions of the
basic framework, including mixed auctions and general for-
mula auctions.

Background on Linear Logic

In this section, we review the relevant notions from LL. For
full details, the reader is referred to Girard (1995) and Troel-
stra (1992). LL provides a resource-sensitive account of
proofs by means of a controlled use of the structural rules
of weakening and contraction within the sequent calculus:

Γ � Δ
W

Γ, A � Δ
Γ, A, A � Δ

C
Γ, A � Δ

Removing the structural rules, we are lead to split the usual
connectives into two classes, since, for example, the follow-
ing presentations of rules are not equivalent anymore:

Γ � A Γ′ � B
R∧

Γ,Γ′ � A ∧ B

Γ � A Γ � B
R∧

Γ � A ∧ B

Without structural rules, sequents behave as multisets of for-
mula occurrences and we have to distinguish connectives
that take the concatenation of contexts (multiplicatives) and
connectives that demand a shared context (additives).

Given a set of positive atoms A, the language of LL is
defined as follows (where p ∈ A): L ::=

p | 1 | ⊥ | 	 | 0 | L⊥ | L⊗L | L`L | L⊕L | L&L | !L | ?L

Linear negation (·)⊥ is involutive and each formula in LL
can be transformed into an equivalent formula where nega-
tion occurs only at the atomic level. The conjunction A⊗B
(“tensor”) means that we have exactly one copy of A and
one copy of B, no more no less. Thus, e.g., A ⊗ B � A.
We might say that in order to sell A and B, we need some-
one who buys A and B, while here there is just a buyer for
A. We will not directly use the disjunction A ` B (“par”);
rather we use linear implication: A � B := A⊥ ` B. Lin-
ear implication can be seen as a form of deal: “for A, I sell
you B”. The additive conjunction A & B (“with”) intro-
duces a form of choice: we have one of A and B and we can
choose which one. For example, A&B � A, but we do not
have them both: A& B � A ⊗ B. The additive disjunction
A ⊕ B (“plus”) means that we have one of A and B, but
we cannot choose, e.g., A � A ⊕ B but A ⊕ B � A & B.
The exponentials !A and ?A reintroduce structural rules in
a local way: !-formulas licence (C) and (W) on the lefthand

72

ax
A � A

Γ, A � C Γ′ � A
cut

Γ,Γ′ � C

MULTIPLICATIVES

Γ, A, B � C
⊗L

Γ, A ⊗ B � C

Γ � A Γ′ � B
⊗R

Γ,Γ′ � A ⊗ B

Γ � A Γ′, B � C
�L

Γ′,Γ, A � B � C

Γ, A � B
�R

Γ � A � B

Γ � C
1L

Γ, 1 � C
1R

� 1

ADDITIVES

Γ, Ai � C
&L

Γ, A0&A1 � C

Γ � A Γ � B
&R

Γ � A&B

Γ, A � C Γ, B � C
⊕L

Γ, A ⊕ B � C

Γ � Ai
⊕R

Γ � A0 ⊕ A1

0L
Γ, 0 � C

�R
Γ � �

EXPONENTIALS

Γ, A � C
!L

Γ, !A � C

!Γ � A
!R

!Γ �!A

STRUCTURAL RULES

Γ, A, B,Γ′ � C
P

Γ, B, A,Γ′ � C

Γ, !A, !A,� C
!C

Γ, !A � C

Γ � Δ
!W

Γ, !A � Δ

Table 1: Sequent Calculus for Intuitionistic LL

side of �; ?-formulas licence (C) and (W) on the right. Intu-
itively, exponential formulas can be copied and erased; they
are relieved from their linear status.

We will use the intuitionistic version of linear logic (ILL),
obtained by restricting the righthand side of the sequent to
a single formula; so for example we will not have ? and `
in the language. In fact, we will mostly use ILL augmented
with the global weakening rule (W). The reasons for these
choices will become clear later. The rules of the sequent
calculus for ILL are shown in Table 1 (Troelstra 1992).

To control complexity, we can restrict attention to certain
fragments: intuitionistic multiplicative linear logic (IMLL)
using only ⊗ and �; intuitionistic multiplicative additive
linear logic (IMALL) using only ⊗, �, & and ⊕; and Horn
linear logic (HLL). In the latter, sequents must be of the
form X,Γ � Y (Kanovich 1994), where X and Y are ten-
sors of positive atoms, and Γ is one of the following (with
Xi, Yi being tensors of positive atoms):

(i) Horn implications: (X1 � Y1)⊗ · · · ⊗ (Xn � Yn)

(ii) &-Horn implications: (X1 � Y1) & · · ·& (Xn � Yn)

For these fragments we can rely on the following proof-
search complexity results. MLL is NP-complete and so is

MLL with full weakening (W) (Lincoln 1995). The same
results apply for the intuitionistic versions. HLL is NP-
complete, and so is HLL + W (Kanovich 1994). MALL and
IMALL are PSPACE-complete (Lincoln et al. 1992).

Bidding Languages

In this section, we provide three examples for bidding lan-
guages that can be represented using different types of Horn
fragments of LL. These are the well-known and widely used
XOR- and OR-languages (Nisan 2006), as well as the lan-
guage of k-additive valuations (Chevaleyre et al. 2008),
which itself is an instance of the framework of bidding lan-
guages based on weighted propositional formulas (Boutilier
and Hoos 2001; Uckelman et al. 2009). Importantly, while
all the works just cited discuss bidding languages for auc-
tions in which goods are available in single units, in what
follows we shall present languages that are also suitable for
multi-unit CAs.

In a multi-unit CA, an auctioneer wants to sell the ele-
ments of a finite multiset of goods M (with finite multi-
plicity) to a group of bidders. Let M(p) denote the mul-
tiplicity of item p in M. We define the set of atoms
A = {p1, . . . , pm} as the set of elements of M ignoring
their multiplicity.

There is an isomorphism between multisets and tensor
formulas of atoms (up to associativity and commutativity):

{m1, . . . , mk} ∼= m1 ⊗ · · · ⊗ mk

Thus, we can represent each subset X ⊆ M as a tensor prod-
uct. Moreover, if M ∼= A and N ∼= B, then the (disjoint)
union of M and N is isomorphic to A ⊗ B.

We now want to define languages to encode valuations
v : P(M)→ N, mapping subsets of M to prices.2

Atomic Bids

To model prices symbolically, we assume a finite set of dis-
tinct weight atoms W = {w1, ..., wp}. In fact, often we will

use just one weight atom u. We write uk for the tensor prod-
uct u ⊗ · · · ⊗ u (k times). To associate weights with num-
bers, we define a function val : W → N, with val(u) = 1.
Let W⊗ be the set of all finite tensor products of atoms
in W , modulo commutativity (including the “empty” prod-
uct 1). That is, W⊗ = {1, w1, w2, w1⊗w2, . . .}. We extend
val to W⊗ by stipulating val(1) = 0 and val(ϕ ⊗ ψ) =
val(ϕ)+val(ψ). In particular, this means that val(uk) = k.

Definition 1. An atomic bid is a formula of the form B �

w, where B is a tensor product of atoms in A and w ∈ W .

In a CA, given a bid B � w, we can work with two al-
ternative assumptions: no free disposal at the bidder’s side,
meaning that the bidder will pay w if she receives exactly
B, and free disposal at the bidder’s side, meaning that the
bid is satisfied whenever the bidder receives at least B. In
the sequel, unless otherwise stated, we will always assume

2For ease of notation, we shall assume 0 ∈ N.

73

free disposal. To model free disposal, we will use ILL with
weakening (W).3

Definition 2. Every bid formula BID generates a valuation
vBID mapping multisets X ⊆ M to prices:

vBID(X) = max{val(w′) | w′ ∈ W⊗ and X, BID � w′}

Definition 2 applies to atomic bids as well as to the more
powerful bidding languages we will define in the sequel. In
the case of atomic bids BID = (B � w), it simply says that
vB�w(X) = w whenever X is equal to a superset of the
multiset isomorphic to B, and vB�w(X) = 0 otherwise.

In case the only weight atom used is u, i.e., if W = {u},
then Definition 2 can be simplified and we obtain:4

vBID(X) = max{k | X, BID � uk}

XOR-bids

An XOR-bid 〈B1, w1〉 XOR · · · XOR 〈B�, w�〉 expresses that
a bidder would like to get at most one of the bundles she
specifies, for the associated price (Nisan 2006). In LL, this
idea can be captured via the additive conjunction (&).

Definition 3. An XOR-bid is a formula of the form

(B1 � w1) & ... & (B� � w�),

where each Bi is a tensor product of atoms in A and each
wi is a weight atom from W .

Definition 2 provides the semantics for XOR-bids by fixing
the valuation functions they generate.

Example 4. Given an XOR-bid (p � u) & (q �

w) & (p ⊗ q ⊗ r � z), suppose the auctioneer provides
{p, p, q, r, s}. Using these goods, it is possible to satisfy
each of the atomic bids in the XOR-bid. For example, the
auctioneer can satisfy the bid producing z:

p, q, r, p ⊗ q ⊗ r � z � z
W

p, p, q, r, s, p ⊗ q ⊗ r � z � z
&L

p, p, q, r, s, (p � u) & (q � w) & (p ⊗ q ⊗ r � z) � z

However, we have to choose which atomic bid to satisfy,
according to the meaning of &.

Example 5. We define two classes of valuation functions,
adapting their definitions from Nisan (2006) to the multi-
unit case. The simple additive valuation, v(X) = |X | for
X ⊆ M, can be expressed via the following formula, which
is exponential in size in the number of items in M (we
slightly abuse the notation identifying the multiset B with
the corresponding tensor formula):

&B⊆M(B � u|B|)

The simple unit demand valuation, v(X) = 1 for X �= ∅
and v(∅) = 0, can be expressed in the XOR-language via:

(p1 � u) & · · ·& (pm � u)

3Alternatively, we could use the additive constant of linear logic
� and write bids B ⊗� � w to make it explicit in the syntax that
a bidder has free disposal.

4We can define u0 = 1. Using weakening (to represent free
disposal), from � 1 we get Γ � 1, for any Γ. So every bid pro-
duces u0, since it will always be satisfied by any allocation (also
by allocating nothing), e.g., p, p ⊗ q � uk � 1 will be provable.

We say that a valuation v : P(M) → N is monotonic
if and only if for all X1, X2 ⊆ M, if X1 ⊆ X2, then
v(X1) ≤ v(X2). Recall that we can model both free dis-
posal or the lack thereof simply by using � with and with-
out weakening (W), respectively. Following Nisan (2006)
and Cerquides et al. (2007) we can easily prove that, also
in our framework, the XOR-language without free disposal
can express all valuations and the XOR-language with free
disposal is fully expressive over the space of monotonic val-
uations.

Proposition 6. The following hold:

(1) Every valuation v : P(M) → N is generated by some
XOR-bid without free disposal.

(2) XOR-bids with free disposal generate all monotonic valu-
ations and only those.

Proof. (1) Given a function v: P(M) → N, for each pair
(X, h) ∈ v, define an atomic bid (x1 ⊗ · · · ⊗ x� � h̄)
where x1 ⊗ · · · ⊗ x�

∼= X and h̄ is a weight symbol for
h. Joining all the atomic bids via &, we have a complex
bid &iBIDi generating the function v&iBIDi

. Now, for any
Y ⊆ M we get v&iBIDi

(Y) = v(Y), since the only w′ we
can prove with the sequent Y,&iBIDi � w′ is the weight
associated with Y .

(2) In one direction, if a function v is generated by an
XOR-bid BID with free disposal, then, given X1 ⊆ X2,
if X1, BID � w′, by applying weakening, we also have
X2, BID � w′. Hence, {w′ | X1, BID � w′} ⊆ {w′ |
X2, BID � w′} and therefore v(X1) ≤ v(X2). For the
other direction, we can take the construction in the proof
of part (1), but now allowing for weakening.

OR-bids

An OR-bid 〈B1, w1〉 OR · · · OR 〈B�, w�〉 states that a bidder
agrees to receive any number of disjoint bundles at the sum
of their prices (Nisan 2006). The appropriate LL connective
for modelling this kind of semantics is the tensor (⊗).

Definition 7. An OR-bid is a formula of the form

(B1 � w1)⊗ ... ⊗ (B� � w�),

where each Bi is a tensor product of atoms in A and each
wi is a weight atom from W .

The intended meaning of a tensor/OR-bid is that the bidder
would pay the sum of the corresponding wi for each bundle
of goods Bi she gets. The formal semantics of OR-bids is
again given by Definition 2.

The usual condition on OR-bids, namely that the required
bundles of goods do not overlap, works well if goods are
available in single units: since we are here considering the
multi-unit case, the condition of not being allowed to over-
lap is replaced by imposing that the right amount of goods
is provided in order to satisfy the atomic bids in the OR-bid.
For example, the OR-bid 〈p, 1〉 OR 〈p, 1〉 will be fully satis-
fied only if the auctioneer provides two copies of p. This is
the meaning of the provability of a sequent containing OR-
bids in Definition 2.

74

Example 8. Given an OR-bid (p ⊗ q � v) ⊗ (q � w),
suppose the auctioneer provides {p, q}. The OR-bid can be
satisfied in two possible ways:

p, q, p ⊗ q � v � v
W

p, q, p ⊗ q � v, (q � w) � v
⊗L

p, q, (p ⊗ q � v)⊗ (q � w) � v

or:
q, q � w � w

W
p, q, q � w � w

W
p, q, (p ⊗ q � v), q � w � w

⊗L
p, q, (p ⊗ q � v)⊗ (q � w) � w

The definition of the valuation generated by OR-bids then
lets us take the maximum of w and v.

Example 9. In the OR-language we can express the simple
additive valuation by means of the following formula:

⊗

i∈{1,...,m}

[(pi � u)⊗ · · · ⊗ (pi � u)︸ ︷︷ ︸
M(pi) times

]

Observe that the OR-language is only attractive if we do as-
sume free disposal (i.e., weakening); without it, it has the
same expressive power as the simple language of atomic
bids. For example, without free disposal, (p � uk)⊗ (q �

uk′

) and p ⊗ q � uk+k′

generate the same valuation.
It is interesting to remark that the usual characterisation

of the expressivity of the OR-language for single-unit CAs
(Nisan 2006) cannot straightforwardly be extended to the
multi-unit case. In the single-unit case, OR-expressions gen-
erate functions v such that v(X∪Y) ≥ v(X)+v(Y), when-
ever X ∩ Y = ∅. If we try to apply the same condition to
the multi-unit case, taking the disjoint union of X and Y ,
we do not arrive at a correct characterisation of the expres-
sivity of the OR-language.. Take the expression OR : (p �

u) ⊗ (p ⊗ p � u). We have that the generated function
will provide a value of 1 on {p, p}, vOR({p, p}) = 1, which
is less than v({p}) + v({p}) = 2. The problem is con-
nected with the interpretation of the marginal value that can
be associated with various copies of a same item. Moreover,
since we are dealing with multisets of finite multiplicity, the
valuations generated by our languages cannot grow arbitrar-
ily, so at a certain point the function generated by the OR-
expression will provide a constant value.

We leave the full investigation of the expressivity of our
tensor language to future work.

K-additive Languages

The language of k-additive valuations (Chevaleyre et al.
2008) is based on the idea of specifying weights for the
marginal valuations derived from sets of goods, rather than
directly specifying the values of full bundles. Let M[k] be
the set of all multisets Y ⊆ M such that |Y | ≤ k. A
valuation v is called k-additive if there exists a mapping
v′ : M[k] → Z such that v(X) =

∑
{v′(Y) | Y ⊆

X and Y ∈ M[k]}. The notion of k-additivity gives rise
to a bidding language: by specifying a (marginal, possibly
negative) price for each bundle of size ≤ k (as an atomic
bid) we can represent v′ and thus v.

The class of k-additive languages are a special case of the
family of languages based on weighted propositional for-
mulas (Uckelman et al. 2009). Such languages have been
widely studied in the AI literature; for the specific use in
CAs they have first been proposed by Boutilier and Hoos
(2001). A goalbase G is a set of pairs (ϕ, w), where ϕ is
a proposition (in classical logic) and w is a weight. G in-
duces a valuation that maps any assignment of truth values
to atoms to the sum of the weights of the formulas that are
satisfied by that assignment (which we can think of as a bun-
dle of goods). A characterisation of k-additive valuations
in logical terms is provided by Uckelman et al. (2009); the
class of k-additive functions is proved to be equivalent to the
class of functions generated by goalbases of positive cubes,
i.e., conjunctions of positive literals, (p1 ∧ · · · ∧ p�, w).

A difference between the OR-language and goalbase lan-
guages (including k-additive languages) is that the accepted
atomic bids may overlap. For example, in G = {(p ∧ q, 5),
(p, 3)}, the allocation of p and q will satisfy both atomic
bids. In our framework, this means that the allocated goods
are not consumed within a goalbase. We define atomic bids
that interpret goods as being reusable as formulas of the
form (Bi � Bi ⊗ wi), where Bi is a tensor of atoms.

Definition 10. A k-additive bid is a formula of the form

(B1 � B1 ⊗ w1)⊗ · · · ⊗ (B� � B� ⊗ w�),

where each Bi is a tensor product of atoms in A and each
wi is a weight atom from W .

The semantics of k-additive bids is given by Definition 2.
Note that we can also mix different kinds of bids, e.g., bids
that do and do not consume goods (OR- and k-additive bids).
We will discuss in more detail the relationship between dif-
ferent types of resources later.

Example 11. Suppose G = {(p ⊗ q � p ⊗ q ⊗ v), (p �

p ⊗ w)}. If the auctioneer provides p and q, then all the
atomic bids in G are satisfied:

p � p

p, q � p ⊗ q

p, q, v, w � v ⊗ w
⊗L

p ⊗ q ⊗ v, w � v ⊗ w
�L

p, q, p ⊗ q � p ⊗ q ⊗ v, w � v ⊗ w
⊗L

p ⊗ w, p ⊗ q � p ⊗ q ⊗ v � v ⊗ w
⊗R

p, q, p � p ⊗ w, p ⊗ q � p ⊗ q ⊗ v � v ⊗ w

Regarding the expressivity of k-additive bids, it is possible
to adapt the relevant results of Uckelman et al. (2009) to the
case of multiple units and to our LL framework.

Remark 12. Intuitionistic (and classical) logic can be
translated into LL (Girard 1995). Define the translation
(·)∗ as follows: p∗ = p, (A ∧ B)∗ = A∗ & B∗, A →
B = !(A∗) � B∗, (A ∨ B)∗ = A∗ ⊕ B∗. We have
that: Γ �IL A if and only if !Γ∗ �LL A∗. So we can
translate any goalbase into a LL formula with the same log-
ical behaviour, in the sense that they will be satisfied by the
same sets of resources. However, the full power of exponen-
tials makes LL with weakening, though decidable (Kopylov
1995), exponential-space hard (Urquhart 2000), while full
LL is undecidable (Lincoln et al. 1992). Thus, while in
principle one can model the interaction of bounded and un-
bounded resources (sets and multisets) in LL, the price to
pay is complexity.

75

The Allocation Problem
In this section, we formulate the problem of computing an
allocation producing a certain amount of revenue as the
problem of finding a proof for a LL sequent. This allows
us, at least in principle, to model the winner determination
problem as a series of calls to a LL theorem prover.

Let M again be a multiset of goods owned by the auction-
eer, and let N = {1, ..., n} be the set of bidders. We add to

the set of atoms A = {p1, . . . , pm} all atoms p
j
i to express

that the good pi is allocated to the individual j. From now
on, we will assume that bids are defined using these indexed
names of goods, i.e., bidder j ∈ N must express her bid

using the set of atoms {pj
1, . . . , p

j
m}.

In order to express that each (copy of) a good may be
allocated to any of the bidders (but not to more than one),
we shall use the following formula:5

MAP :=
⊗
p∈A

[&j∈N (p � pj)]M(p) (1)

Given bids BID1, . . . , BIDn, an allocation yielding revenue
k is a function α : M → N ∪ {∗} with

∑
i vBIDi

(Ai) = k,

where Ai = α−1(i) and α−1(∗) are the unallocated goods.
We now define the concept of allocation sequent, which is

intended to capture the problem, faced by the auctioneer, of
finding a feasible allocation returning a particular revenue.
We restrict ourselves to the case of W = {u}. We take M
and N to be fixed, and MAP to be defined accordingly.

Definition 13. The allocation sequent for revenue k and
bids BID1, . . . , BIDn is defined as the following LL sequent:

M, MAP, BID1, . . . , BIDn � uk

We are now ready to state the relationship between proofs
and actual allocations.

Proposition 14. Given n bids in any of the bidding lan-
guages introduced (XOR, OR, k-additive), every allocation
α with revenue k provides a proof π of an allocation sequent
for k, and vice versa, every proof π of an allocation sequent
for k provides an allocation α with revenue k.

Proof. We sketch the main steps of the proof.

(⇒) Let α : M → N ∪ {∗} be an allocation for
BID1, . . . , BIDn yielding revenue k. W.l.o.g. assume the
first l ≤ n are the bidders receiving a nonempty bun-
dle. Let A1, . . . , Al be those nonempty subsets of M, i.e.,

k =
∑

j≤l vBIDj
(Aj). For each j ≤ l, we define A

j
j as the

multiset of atoms in Aj indexed with the name of bidder j.

By definition, if vBIDj
(Aj

j) = val(w), then A
j
j , BIDj � w.

So we can start building the proof π, applying (⊗R):

A1

1, BID1 � w1 . . . Al
l, BIDl � wl

a
1

1, . . . , a
1

h1
| {z }

A1

1

, ..., a
l
1, . . . , a

l
hl

| {z }

Al
l

, BID1, . . . , BIDl � w1 ⊗ · · · ⊗ wl

5Formula (1) is required in order for our approach to work with
k-additive languages, since here we have to model that, on the one
hand, goods are reusable within the bid of a single bidder and, on
the other, goods are not sharable across the bids of distinct bidders.
If we were to restrict attention to XOR- and OR-languages, then we
could do without indexed goods and without formula (1).

For each a
j
j ∈ A1

1 ∪ · · · ∪Al
l, we use axioms aj � aj ; so we

get by application of (�L):

aj � aj a1

1, . . . , a
1

h1
, . . . , al

1, . . . , a
l
hl

, BID1, . . . , BIDl � wj

a1

1, . . . , aj , aj � a
j
j , . . . , al

hl
, BID1, . . . , BIDl � wj

From each aj � a
j
j we can build MAP, inferring, by n−1

applications of (&L), the formula&j∈N (aj � a
j
j).

If A1, . . . , Al equals the full multiset of goods M,
then we are done. Otherwise, we can weaken the
proof by introducing atoms in α−1(∗) and formulas
(c � c1) & · · ·& (c � cn), for each c ∈ α−1(∗).

(⇐) Given any proof π of an allocation sequent, we can
transform it as follows. First, we can move the application of
weakening down. Then we can also delay the application of
& in such a way that every application of (&R) is below any

application of (⊗R).6 So we obtain a proof π′ such that there
is no application of weakening and (&L) above the step:

π′

M′, a � aj , b1, . . . , bq � uk
(2)

where M′ ⊆ M, a � aj are some of the &-conjuncts
composing MAP, and each bi may be an atomic bid, a part
of a k-additive bid, a part of an OR-bid, or an atom in an
XOR-bid. Since π′ is proved without weakening and &, π′

is provable in MLL. Sequents in MLL are balanced (Lincoln
et al. 1992): the number of positive and negative atoms oc-
curring in the sequent must be the same. So, using step (2),
we can define Aj = {aj | aj ∈ π′}, since those are the
goods actually used to satisfy bids in π′.

In this way, we could import known algorithms for winner
determination for CAs into our framework. On the other
hand, given a proof π in the fragments we saw, we can trans-
form it into a cut-free proof in polynomial time (Girard, Sce-
drov, and Scott 1992). In a cut-free proof, each connective
is visited exactly once, so given a proof of the allocation se-
quent, we can retrieve an allocation in polynomial time.

For the three languages presented, allocation sequents be-
long to HLL, so the complexity of checking whether revenue
k is attainable is in NP (Kanovich 1994), meaning that our
form of modelling the problem does not increase complexity
with respect to the standard approach (Cramton, Shoham,
and Steinberg 2006). Of course, Proposition 14 only pro-
vides a method for solving the decision variant of the WDP.
In practice, we will want to find the maximal revenue k such
that uk is provable. This can be achieved by using binary
search over possible values of k and checking the corre-
sponding allocation sequents in turn.

Extensions

Next, we discuss several extensions of our basic framework
for modelling CAs in LL. We shall restrict ourselves to brief
examples illustrating the main ideas.

6Permutation rules in LL have been fully investigated by
Galmiche and Perrier (1994).

76

Enriching the Language

In LL, we can distinguish between sharable goods, between
bidders, reusable goods, for one bidder, and simple consum-
able goods. The idea that LL may be useful in designing
bidding languages that can distinguish sharable from non-
sharable goods has already been hinted at by Boutilier and
Hoos (2001). We can define a bounded form of exponential
as !�ϕ, meaning that we can use ϕ at most � times (Girard,
Scedrov, and Scott 1992). We can then define the full avail-
ability of a good for the bidders as !�p where � is big enough,
so !�p can be shared by all bidders demanding it. In order to
express the reusability of a good for a single bidder j, we
can write !�pj , which will satisfy only bidder j’s bids. In or-
der to make explicit that j can reuse p as much as she likes,
we can add the formula pj

� !�pj to j’s bid formula.

Mixed Auctions

In mixed auctions (Cerquides et al. 2007), bids are encod-
ing valuations over multisets of transformations. A transfor-
mation is an input-output pair (I, O) of multisets of goods,
indicating to the auctioneer that the bidder is willing to pro-
duce O if supplied with I (as well as to pay an associated
price). An atomic bid 〈(I, O), w〉 will be satisfied by the al-
location of transformation (I ′, O′) if I ′ is enough to satisfy
the bidder’s demand I (I ′ ⊇ I) and O is enough to satisfy
the auctioneer’s demand O′ (O′ ⊆ O). In LL, we can define
mixed atomic bids as I � O ⊗ w. We can define bidding
languages on top of atomic bids as before; and the valuation
generated by a complex mixed bid BID is given by:

vBID(I, O) = max{val(w′) | w′ ∈ W⊗ and I, BID � O⊗w′}

Example 15. Suppose the auctioneer’s available input I
is {p, q} and she wants to obtain an output O of (at least)
{r, s}, using the following transformations offered by the
bidders: p � r ⊗ t ⊗ v, t � s ⊗ p ⊗ u. Since the sequent
is provable, there is a feasible allocation:

[q, p]I , p � r ⊗ t ⊗ v, t � s ⊗ p ⊗ u � [r ⊗ s]O ⊗ p ⊗ u ⊗ v

As in the work of Cerquides et al. (2007), the XOR-language
can be proved to be fully expressive with respect to valua-
tions defined over transformations. Moreover, an allocation
of transformations to bidders in the sense of Cerquides et al.
(2007) provides a proof π of the sequent

I, BID1, . . . , BIDn � O ⊗ uk,

and, vice versa, given a proof π we can define an allocation
as we did in the previous section.

Formula Auctions

We could in principle generalise the languages we saw al-
lowing for any kind of formula to be a bid. Generalising
even further, we could replace M (a tensor of atoms) with
an arbitrary formula A. This leads to what we call a for-
mula auction, in which, intuitively speaking, the auction-
eer owns a “big” formula A, the bidders submit their bids
BID1, . . . , BIDn (arbitrary formulas, using an indexed alpha-
bet), and the WDP amounts to finding “small” formulas

B1, . . . , Bn such that A � B1⊗. . .⊗Bn and B
j
j , BIDj � wj

(where B
j
j is the indexed version of Bj) for all bidders j and

the sum of the values of the weight atoms wj is maximal. (If
desired, this can also be combined with the specification of
a required output for the auctioneer.)

Interestingly, our approach also extends to this very gen-
eral form of one-to-many negotiation. Indeed, it is possible
to construct a single sequent that corresponds to the WDP:

A, MAP, BID1, ..., BIDn � C[uk] (3)

Here, C is the output7 which may contain a tensor formula
uk representing payments; and MAP is a generalisation of
formula (1) that can be defined by induction on formulas.
The provability of sequent (3) entails the feasibility of the
exchange (the demands match the supplies). The complex-
ity bounds of the proof search for sequent (3) will depend
exclusively on the language in which formulas are defined.

Conclusion

We have argued that linear logic provides a powerful formal
framework in which to model combinatorial auctions. Not
only does LL allow us to extend several of the standard bid-
ding languages to the multi-unit case in a generic manner,
but we can also model the procedural aspects of auctions
inside the logical framework, by relating the winner deter-
mination problem of auctions to the notion of provability.

Future work will include (1) the use of proof nets (Girard
1995) to simplify the structure of proofs and to provide a
semantic (functional) interpretation of the auction itself, and
(2) modelling objective functions other than sum-taking so
as to extend the approach from combinatorial auctions (with
utilitarian aggregation) to other forms of resource allocation
(e.g., fair division with egalitarian aggregation).

Acknowledgements. We would like to thank the review-
ers of this paper for their helpful feedback.

References

Boutilier, C., and Hoos, H. H. 2001. Bidding languages
for combinatorial auctions. In Proc. 17th International Joint
Conference on Artificial Intelligence (IJCAI-2001).

Cerquides, J.; Endriss, U.; Giovannucci, A.; and Rodrı́guez-
Aguilar, J. A. 2007. Bidding languages and winner deter-
mination for mixed multi-unit combinatorial auctions. In
Proc. 20th International Joint Conference on Artificial In-
telligence (IJCAI-2007).

Chevaleyre, Y.; Endriss, U.; Estivie, S.; and Maudet, N.
2008. Multiagent resource allocation in k-additive domains:
Preference representation and complexity. Annals of Oper-
ations Research 163(1):49–62.

Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2006.
Combinatorial Auctions. MIT Press.

Galmiche, D., and Perrier, G. 1994. On proof normalization
in linear logic. Theor. Comput. Sci. 135(1):67–110.

7We have used intuitionistic sequents, because they have a sin-
gle output. Thus, we can always see which formula in the sequent
provides the revenue.

77

Girard, J.-Y.; Scedrov, A.; and Scott, P. J. 1992. Bounded
linear logic: a modular approach to polynomial-time com-
putability. Theor. Comput. Sci. 97(1):1–66.

Girard, J.-Y. 1987. Linear logic. Theor. Comput. Sci.
50(1):1–101.

Girard, J.-Y. 1995. Linear logic: Its syntax and semantics.
In Advances in Linear Logic. Cambridge University Press.

Goldsmith, J., and Junker, U. 2008. Preference handling for
artificial intelligence (editorial). AI Magazine 29(4):9–12.

Harland, J., and Winikoff, M. 2002. Agent negotiation as
proof search in linear logic. In Proc. 1st International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002).

Kanovich, M. I. 1994. The complexity of Horn fragments of
linear logic. Annals of Pure and Applied Logic 69(2-3):195–
241.

Kopylov, A. P. 1995. Decidability of linear affine logic. In
Proc. 10th Annual IEEE Symposium on Logic in Computer
Science (LICS-1995). IEEE Computer Society.

Küngas, P., and Matskin, M. 2004. Symbolic negotiation

with linear logic. In Proc. 4th International Workshop on
Computational Logic in Multiagent Systems (CLIMA IV).
Springer-Verlag.

Lincoln, P.; Mitchell, J. C.; Scedrov, A.; and Shankar, N.
1992. Decision problems for propositional linear logic. An-
nals of Pure and Applied Logic 56(1–3):239–311.

Lincoln, P. 1995. Deciding provability of linear logic for-
mulas. In Proc. Workshop on Advances in Linear Logic.
Cambridge University Press.

Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Combinatorial Auctions. MIT Press.

Troelstra, A. S. 1992. Lectures on Linear Logic. CSLI
Publications.

Uckelman, J.; Chevaleyre, Y.; Endriss, U.; and Lang, J.
2009. Representing utility functions via weighted goals.
Mathematical Logic Quarterly 55(4):341–361.

Urquhart, A. 2000. The complexity of linear logic with
weakening. In Buss; Hájek; and Pudlák., eds., Logic Collo-
quium ’98, Lecture Notes in Logic. AK Peters.

78

