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Abstract. Ontologies represent principled, formalised descriptions of
agents’ conceptualisations of a domain. For a community of agents, these
descriptions may differ among agents. We propose an aggregative view
of the integration of ontologies based on Judgement Aggregation (JA).
Agents may vote on statements of the ontologies, and we aim at con-
structing a collective, integrated ontology, that reflects the individual
conceptualisations as much as possible. As several results in JA show,
many attractive and widely used aggregation procedures are prone to re-
turn inconsistent collective ontologies. We propose to solve the possible
inconsistencies in the collective ontology by applying suitable weakenings
of axioms that cause inconsistencies.

1 Introduction

Social choice theory is a branch of economic theory that deals with the de-
sign and analysis of mechanisms for aggregating opinions of individual agents
to arrive at a basis for a collective decision [5]. A ubiquitous example of such a
mechanism is voting, usually intended as voting on preferences in standard so-
cial choice. Recently, the model of aggregation has been applied to judgements,
or more generally to propositional attitudes, expressed in some logical setting,
in an area termed Judgement Aggregation (JA) [10, 12]. Ontologies are widely
used in Knowledge Representation to provide principled descriptions of agents’
knowledge, by presenting a clear formalisation of their conceptualisations. The
meaning of the concepts is then represented by means of a number of axioms,
which may be written in a variety of logical systems of varying expressivity [8].
With the exception of [14], the usual approaches to JA are usually applied to
propositional logics, modal logics, or even more general logics, but they do not
touch the problem of the possibly heterogeneous definitions of concepts used by
the agents to formalise their individual conceptualisation. Understanding what is
the meaning of a concept for a community of agents and deciding how to elect a
common conceptualisation out of possibly conflicting ones is an interesting open
problem that has several applications, for instance, in the context of political ap-
plications of JA. For instance, understanding what is the meaning of a concept
for a community of agents is crucial for modelling electoral campaigning, where
parties try to maximise their electorate by appealing to widely shareable world



views. In the context of ontology aggregation, we may think of each ontology as
a voter, and these voters try to ‘elect’ a collective ontology that adequately and
fairly represents their conceptualisations. JA then provides the formal means
to assess the suitable aggregation procedures for a given aggregation scenario,
by defining a number of properties that aggregators may or may not satisfy.
However, many results in JA show that a significant number of important ag-
gregation procedures, e.g., the majority rule, fail in preserving the consistency
of the individual inputs [12, 14]. This means that, although we assume that all
ontologies that agents submit for aggregation are consistent, the outcome of the
aggregation may not be. A number of strategies to circumvent inconsistency have
been pursued in JA, for instance, abandoning well-known aggregators in favour
of aggregators that indeed preserve consistency, or restricting the set of propo-
sitions about which the agents cast their vote to those for which consistency
can be ensured. In this paper, we propose a novel approach. We discuss well-
known justified aggregation procedures that are actually used in real collective
decision problems, viz absolute majority rule, and we propose a computational
viable methodology based on axiom weakening to repair their possibly inconsis-
tent outcomes. The idea of axiom weakening is to generalise or specialise possibly
conflicting concepts with concepts that are, in some sense, as close as possible to
the original ones, but do not yield an inconsistency. Preventing inconsistencies
by appealing to ‘general’ concepts, which may then be prone to agreement al-
though they have not been voted on by any individual, has been suggested and
legitimated in the literature on social choice and deliberation [4, 11, 13]. This is
an important issue, and it also relates to the distinction between fine vs. coarse
integration of ontologies. In the case of a coarse integration, the ontology to be
constructed will always contain some of the formulas included in the individual
ontologies; in the fine integration, new formulas shall be constructed. The ap-
proach in [14] provides an example of coarse integration. In this paper, we are
after a viable definition of fine integration.

To resume, the contributions of this paper are as follows. We consider possible
conceptualisations of agents as represented by means of ontologies written in
Description Logic (DL). In particular, we focus on the basic DL ALC [1], which is
a popular language for ontology development. Secondly, we use the methodology
of SCT and JA of [14] to define a framework for ontology aggregation. Thirdly,
we use refinement operators for concept generalisations and specialisations, and
we apply them to repair the collective ontology by selecting adequate refinement
of the axioms that caused the inconsistency.

2 Ontologies and Description logics

We take an ontology to be a set of formulas in an appropriate logical language,
describing our domain of interest. A significant widely used basic description
logic is ALC, which is the logic we shall be working with here, for full details we
refer to [1]. The language of ALC is based on an alphabet consisting of atomic
concepts names NC , and roles names NR. The set of concept descriptions is
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generated by the following grammar (where A represents atomic concepts and
R role names):

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C

We collect allALC concepts over NC and NR in L(ALC, NC , NR). We assume
a linear order ≺ALC over ALC formulas. We do not need to attach any particular
meaning to it, but it will be helpful for coping with non-determinism and for
tie-breaking.A TBox is a finite set of concept inclusions of the form C v D
(where C and D are concept descriptions). It is used to store terminological
knowledge regarding the relationships between concepts. An ABox is a finite
set of formulas of the form A(a) (“object a is an instance of concept A”) and
R(a, b) (“objects a and b stand to each other in the R-relation”).1 It is used to
store assertional knowledge regarding specific objects. The semantics of ALC is
defined in terms of interpretations I = (∆I , ·I) that map each object name to
an element of its domain ∆I , each atomic concept to a subset of the domain,
and each role name to a binary relation on the domain. The truth of a formula
in such an interpretation is defined in the usual manner [1]. In the remainder
of this paper, we restrict our attention to TBox axioms. As usual, a TBox T is
consistent if it has a model, and inconsistent otherwise. A concept C is satisfiable
with respect to a TBox if there exists an interpretation I of the TBox that makes
CI non-empty. A consequence relation |= is defined on top of this semantics in
the standard way. The relation |=O denotes the consequence relation w.r.t. an
ontology O.

3 Aggregating Ontologies

Consider an arbitrary but fixed finite set Φ of ALC TBox statements over this
alphabet.2 We call Φ the agenda and any set O ⊆ Φ an ontology. We denote
the set of all those ontologies that are consistent by On(Φ). Let N = {1, . . . , n}
be a finite set of agents. Each agent i ∈ N provides a consistent ontology Oi ∈
On(Φ). An ontology profile is a vector O = (O1, . . . , On) ∈ On(Φ)N of consistent
ontologies, one for each agent. We write NO

ϕ := {i ∈ N | ϕ ∈ Oi} for the set of
agents that include ϕ in their ontology under profile O. Our object of study are
ontology aggregators, that is a function F : On(Φ)N → 2Φ mapping any profile
of consistent ontologies to an ontology.

Observe that, according to this definition, the ontology we obtain as the
outcome of an aggregation process needs not be consistent. Ontology aggregators
that are consistent would be very desirable in general. Unfortunately, they also
suffer certain drawbacks. The unanimous aggregator, that accepts a formula if
every individual does, is one of these. It indeed preserves consistency: if every

1 Note that limiting the ABox to ‘atomic’ formulas is not a restriction, as A may be
given a complex definition in the TBox.

2 The finite set of TBox formulas in Φ might be all TBox formulas of a certain max-
imum length or the union of all TBox formulas that a given population of agents
choose to include in their TBoxes.
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LeftPolicy v RaiseWages
LeftPolicy v RaiseWelfare
RaiseWages u RaiseWelfare v ⊥

Fig. 1. The TBox agenda of the agents.

ontology Oj is consistent, so is Fun(O). However, if the individual ontologies
are heterogeneous enough, the unanimous aggregator is likely to provide a very
poor collective ontology. At the opposite side of the spectrum, we can define the
union aggregator, that accepts any piece of information provided by at least one
agent. In this case, the collective ontology is very likely to be inconsistent.

A way to balance the contributions of agents better than with the unanimous
and the union aggregators, we can adapt the majority rule, which is widely
applied in any political scenarios. In our setting, the majority rule is defined as
follows: The absolute majority rule is the ontology aggregator Fm mapping any
given profile O ∈ On(Φ)N to the ontology

Fm(O) := {ϕ ∈ Φ | #NO
ϕ >

n

2
}

Under the absolute majority rule, a formula gets accepted if and only if
more than half of the individual agents accept it. A simple generalisation of
the majority rule provides the class of quota rules, where the threshold of n

2 is
replaced by any threshold q. The majority rule, and more generally quota rules,
return a consistent ontology only on very simple agendas, i.e., on very simple
ontologies [14].

4 Possibly Inconsistent Collective Ontologies

The following example shows that the absolute majority rule, which is widely
used in practice, is not a consistent aggregator. Our example is a simple adap-
tation of the doctrinal paradox to the case of concept definitions [7, 12].

Consider three left-wing political leaders, i.e., three agents 1, 2, and 3, who
must agree on what is a left policy in order to coordinate their campaigns.
They vote on possible definitions of left-wing policy by casting their votes on
the TBox agenda shown in Figure 1. Each individual ontology, in particular,
formalises possible meanings that agents ascribe to what is a left-wing policy.
Suppose that the agents vote as in Table 1.

Every individual set of axioms is consistent and the concept LeftPolicy is
satisfiable in each of the individual ontologies. Agent 1, for instance, believes
that a left policy must raise both the wages and the levels of welfare, ac-
cordingly this agent believes that it is possible to promote the levels of both.
Agent 2 believes that a left policy only has to raise wages, not the level of
welfare, as they believe that it is not possible to do both. Agent 3 believes
that what counts as a left policy is that it promotes the levels of welfare and
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Table 1. A voting scenario

LeftPolicy v RaiseWages LeftPolicy v RaiseWelfare RaiseWages u RaiseWelfare v ⊥

1 yes yes no
2 yes no yes
3 no yes yes

Maj. yes yes yes

LeftPolicy v RaiseWages LeftPolicy v ReduceInequality
LeftPolicy v RaiseWelfare ReduceInequality v Policy
RaiseWages v ReduceInequality LeftPolicy v Policy
RaiseWelfare v ReduceInequality

Fig. 2. A reference ontology

that it is not possible to increase welfare and wages at the same time. Al-
though all individual ontologies are consistent and the concept LeftPolicy is
indeed satisfiable in each Oi, the ontology obtained by applying the absolute
majority rule is not. The ontology Fm(O1, O2, O3) in this case coincides with
the full agenda of Figure 1. By accepting both LeftPolicy v RaiseWages and
LeftPolicy v RaiseWelfare, we infer LeftPolicy v RaiseWagesuRaiseWelfare, which
together with RaiseWages u RaiseWelfare v ⊥makes the concept of LeftPolicy un-
satisfiable. Moreover, as soon as we assume that there are indeed candidates for
a left-wing policy, e.g., we add an ABox formula LeftPolicy(a), for some con-
stant a, to the ontology Fm(O1, O2, O3), then the collective ontology becomes
inconsistent.

To repair the outcome of the majority rule, we assume that the agents agree
to use a reference ontology (Figure 2). With respect to the reference ontology,
there is more than one way of repairing the collective ontology. The concept
ReduceInequality is a generalisation of RaiseWelfare, and of RaiseWages. So, one
way of reparing is to weaken the axiom LeftPolicy v RaiseWages, by replacing
the concept RaiseWages with ReduceInequality. Symmetrically, one can weaken
LeftPolicy v RaiseWelfare, by generalising the concept RaiseWelfare also with
ReduceInequality. In both cases, we obtain a consistent set of axioms. Another
strategy is to weaken RaiseWages u RaiseWelfare v ⊥, for instance by specialising
the concept RaiseWages u RaiseWelfare into ⊥. However, the repaired ontology
would contain the uninformative axiom ⊥ v ⊥. Although we effectively obtain a
consistent ontology, a repair strategy would ideally avoid such an outcome when
possible.

5 Repairing Collective Ontologies

Our strategy for fixing the collective aggregated ontology relies on weakening the
axioms present in a TBox w.r.t. an ontology. Weakening an axiom essentially
amounts to refine its premise or its conclusion. In this setting, two types of

5



refinement operators exist: specialisation refinement operators and generalisation
refinement operators [9]. Given the quasi-ordered set 〈L(ALC, Nc, NR),v〉, a
generalisation refinement operator is defined as follows:

γT (C) ⊆ {C ′ ∈ L(ALC, Nc, NR) | C vT C ′} .

Whereas a specialisation refinement operator is defined as follows:

ρT (C) ⊆ {C ′ ∈ L(ALC, Nc, NR) | C ′ vT C} .

A generalisation refinement operator takes a concept C as input and returns a
set of descriptions that are more general than C, according to T . A specialisa-
tion operator, instead, returns a set of descriptions that are more specific. The
following strategy was designed to use the novel generalisation and specialisation
refinement operators of [3].

5.1 Axiom Weakening

Weakening an axiom C v D amounts to enlarging the set of interpretations that
satisfy the axiom. This could be done in different ways: Either by substituting
C v D with C v D′, where D′ is a more general concept than D (i.e., its
interpretation is larger); or, by modifying the axiom C v D to C ′ v D, where
C ′ is a more specific concept than C; or even by generalising and specialising
simultaneously to obtain C ′ v D′. Given an ontology O, we denote the set of its
concept names of O by NO

C . We want to define a procedure to change axioms
gradually by replacing them with less restrictive axioms. Recall that γO denotes
the generalisation of a concept and ρO denotes its specialisation with respect to
a given ontology O.

Definition 1 (Axiom weakening). Given an axiom C v D of O, the set of
weakenings of C v D in O, denoted by gO(C v D) is the set of all axioms
C ′ v D′ such that

C ′ = ρ∗O(C) and D′ = γ∗O(D) .

If the ontology O is consistent, the weakening of an axiom in O is always
satisfied by a super set of the interpretations that satisfy the axiom. Let I =
(∆I , ·I) be an interpretation. By definition, the class of all entities that fulfil the
axiom C v D is (∆I \ CI) ∪ DI . A weakening of C v D either specialises C,
therefore restricting CI , and accordingly extending ∆I \ CI , or generalises D,
therefore, extending DI . Moreover, note that ⊥ v > always belongs to gO(C v
D). We want to model how to repair any inconsistent set of axioms Y of ALC,
by appealing to a (consistent) reference ontology R. Notice that, even though it
is not desirable, R can be dissociated from the axioms in the collective ontology.
If the ontology R does not refer to some of the atomic concepts in C or D, then
their generalisation is the most general concept > and their specialisation is the
most specific concept ⊥.3

3 Notice that γT and ρT are defined on arbitrary ALC formulas.
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Algorithm 1 Fixing ontologies through weakening.

Procedure fix-ontology(O,R) . O inconsistent ontology, R reference ontology

1: while O is inconsistent do
2: Y ← mis(O) . find all minimally inconsistent subsets of O
3: for Y ∈ Y do
4: choose ψ ∈ Y, ψ′ ∈ gR(ψ) with Y \{ψ}∪{ψ′} consistent, λO(ψ,ψ′) minimal
5: O ← (O \ {ψ}) ∪ {ψ′}
6: return O

Any inconsistent set of axioms Y can in principle be repaired by means of a
sequence of weakenings of the axioms in Y with respect to R: in the worst case
these axioms are weakened to become a tautology (e.g. ⊥ ⊆ >). However, we
are interested in weakening axioms as little as possible to remain close to the
original axioms. Since every axiom in gO(C v D) is obtained by applying γ and
ρ a finite number of times, we can define λO to be a refinement distance in an
ontology O. Repair strategies can exploit this distance to guide the weakening
of axioms that are the least stringent. Moreover, by trying to minimise the
distance, we are trying to prevent non-informative (i.e. tautological) axioms to
be selected as weakenings. In principle, we can also provide refined constraints
on the generalisation and specialisation paths, e.g. by fixing an ordering of the
concepts of the ontology O that determines which concepts are to be generalised
or specialised first.

5.2 Fixing Collective Ontologies via Axiom Weakenings

When F (O) is inconsistent, we can adopt the general strategy described in
Algorithm 1 to repair it w.r.t. a given (fixed) reference ontology R.

The algorithm finds all the minimally inconsistent subsets Y1, . . . , Yn of F (O)
(e.g., using the methods from [2,15]) and repairs each of them by weakening one
of its axioms to regain consistency. From all the possible choices made to achieve
this goal, the algorithm selects one that minimizes the distance λO (line 4). This
process corrects all original causes for inconsistency, but may still produce an
inconsistent ontology due to masking [6]. Hence, the process is repeated until a
consistent ontology is found. Notice that the algorithm is non-deterministic, since
it depends on the choice of the axiom to weaken, and the weakening selected. As
such, it can also be seen as a strategy returning a non-singleton set of ontologies.
That is, the procedure is non-resolute [14]. To make it resolute, two policies for
breaking ties are required. For both, we can capitalize on the linear order over
formulas ≺ALC introduced earlier. We can define a linear order ≺xALC over axioms
as follows: C v D ≺xALC E v F iff C ≺ALC E, or C = D and D ≺ALC F .

Now, with a reference ontology R and the linear order ≺ALC fixed, the strat-
egy returns an aggregation procedure gR,≺ALC (F (O)): firstly, aggregate the in-
dividual ontologies in O, then generalise the axioms in any possible inconsistent
set of F (O) with respect to the reference ontology R, and obtain gR,≺ALC (F (O)).
We leave a detailed presentation for future work.
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LeftPolicy v RaiseWages
LeftPolicy v RaiseWelfare
RaiseWages u RaiseWelfare v ⊥

Fig. 3. The ontology Fm(O).

5.3 An Application

We illustrate our strategy by discussing the example in Section 4. We have seen
that the absolute majority rule returns an inconsistent collective ontologies. The
inconsistent ontology Fm(O) is presented in Figure 3.

To apply our strategy, we have firstly to select a reference ontology R. Sup-
pose we choose the ontology in Figure 1. We exemplify how gR(Fm(O)) works
by assuming in this case that it is non-resolute. We start by choosing an ax-
iom in a minimally inconsistent subset of Fm(O) that needs to be weakened.
The whole collective ontology Fm(O) is a minimally inconsistent set. So sup-
pose we start by LeftPolicy v RaiseWages. Then, we have to select a concept to
generalise or specialise. Suppose we select RaiseWages. Thus, to generalise the ax-
iom LeftPolicy v RaiseWages we can replace it by LeftPolicy v ReduceInequality,
since ReduceInequality is the closest generalisation to RaiseWages in the reference
ontology R. We obtain then the new ontology, where the axiom LeftPolicy v
RaiseWages has been replaced by the weaker LeftPolicy v ReduceInequality.

Alternatively, we could have started by generalising RaiseWages u RaiseWelfare
v ⊥. In this case, we have two choices, either we generalise ⊥, or we specialise
RaiseWages u RaiseWelfare. ⊥ can be generalised by any concept in the reference
ontology. RaiseWages u RaiseWelfare can here be specialised only by replacing
it with ⊥, obtaining therefore ⊥ @ ⊥, which is a (non-informative) logical ax-
iom. By replacing an axiom with a logical one, the effect on the final ontology
is the same as removing the original axiom (a logical axiom does not restrict
the models of the ontology). Thus, in this case, the repaired ontology contains
LeftPolicy v ReduceInequality and LeftPolicy v RaiseWelfare.

6 Discussion and Future Work

We proposed a novel approach to repair an inconsistent ontology, which is ob-
tained by aggregating the individual ontologies of a community of agents. Our
approach is based on the notion of axiom weakening, which amounts to gener-
alise or to specialise the concepts in axioms that belong to minimally inconsis-
tent subsets. Whilst we presented an interesting viable solution, a more extensive
evaluation is needed. Firstly, discussing good strategies for deciding a reference
ontology is crucial for the present approach. Secondly, the study of the formal
properties of the proposed algorithm and its computational complexity is re-
quired. Finally, it is important to extend the proposed approach to a large class
of description logics and to a variety of important aggregation procedure. We
leave this points for a future work.
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