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Abstract. Socio-technical systems constitute a challenge for multiagent systems
as they are complex scenarios in which human and artificial agents share informa-
tion, interact and make decisions. For example, the design of an airport requires
to interface information coming from automatic apparatuses as security cameras,
conceptual information coming from agents, and normative information which
agents’ behavior must comply with. Thus, in order to design systems that are
capable of assisting human agents in organizing and managing socio-technical
systems, we need fine grained tools to handle several types of information. The
aim of this paper is to discuss a general framework to describe socio-technical
systems as cases of complex multiagent systems. In particular, we use a founda-
tional ontology to address the problems of interoperability and conceptual analy-
sis, we discuss how to interface conceptual information with low level informa-
tion obtained by computer vision or perception, and we discuss how to integrate
information coming from heterogeneous agents.

1 Introduction

This work concentrates on the mutual influence of vision, cognition and social inter-
action in socio-technical systems, i.e. technologically dense contexts, such as, for in-
stance, airports, hospitals, schools, public offices [9]. The process of seeing a scene,
forming a belief or an expectation and engaging in interaction with other agents are
essential features of agents’ (both human and artificial) behavior in such systems. The
entanglement of several layers of information (e.g. individual vs collective, visual vs
inferential, human vs artificial) poses a challenge to the modeling of such complex
environments. The overall aim of the work initiated with this paper is to build a rich
model of agents’ interaction that is capable of providing guidance and possibly per-
formance evaluation of real socio-technical systems. We believe that the multiagent
systems paradigm [28, 27] is a valuable framework to set up the construction of such
complex models, as what is at stake is not only how autonomous agents form beliefs
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and expectations, communicate and act within a norm-governed system, but also their
interaction with decisions that must be taken at systemic level. Our claim is that all
these layers that are required in order to describe agents’ information in socio-technical
systems can be represented and reasoned about by using a rich ontological model, that
is capable of specifying our conceptual hierarchy in a way that is general enough to de-
scribe a complex categorization including physical and social objects, events, roles and
organisations. In order to be effectively connected with the visual systems of artificial
agents, such ontological models must contain information about the external context,
both in its physical and institutional aspects, and information about the agents that in-
habit it, in their physical, perceptual, cognitive and social aspects.

In this paper we address three research challenges:1) providing a rich and struc-
tured description of the domain in all its aspects that is usable and interoperable among
agents, both human and artificial; 2) integrating visual information with knowledge
representation and reasoning and 3) defining and describing the concept of systemic
information as information coming from heterogeneous agents.

Our present contribution is restricted to a conceptual analysis of what are the funda-
mental elements in order to set up an ontological model of socio-technical systems, thus
we shall not focus on possible implementations. The ontological model we propose to
use is DOLCE [21], and such choice is motivated by a series of reasons. First, the onto-
logical perspective allows us to specify the properties of the concepts that we deploy and
the relations holding among them. Such properties and relations are obtained through a
foundational analysis and are expressed as formal axioms [21]. Second, one of DOLCE’s
basic assumptions is its “cognitive bias”, in the sense that it is meant to express the per-
spective of a cognitive agent on a given domain, rather than “how things really are in
the world”. Finally, given that DOLCE comprises a social [22, 3] and a cognitive module
[13], it is capable of dealing with several layers of information.

Regarding the visual information, we rely on a probabilistic methodology based
on graphical models such as Bayesian Networks (BN) [19]; essentially, they allow to
process low-level information, such as video sequences, audio streams and multisen-
sorial input through graph-based inferential mechanisms in a robust and formal way.
In our framework, BNs capture the finer grained knowledge under the form of action
detection (run, sit, drink) and social signals recognition (visual focus of attention, facial
expressions) [12], all expressed under the form of posterior distributions; this way, the
uncertainty associated to the noise of the sensors and the accuracy of the modeling can
be delegated to and managed within the ontological multiagent engine. Even though
information is processed with probabilistic means in BNs, we assume that these will
give as output, via a mechanism based on thresholds, a discrete proposition, that will
then be available to be reasoned upon with logical and ontological tools.

The relationship between individual and systemic information will be approached
by means of techniques developed in multiagent systems, in particular in social choice
theory, judgment aggregation, and belief merging [20, 4].

Ontologies for multiagent systems have been developed in particular in order to pro-
vide agents’ communication languages, [16, 14]. Moreover, models of socio-technical
systems based on goal models have been recently introduced in [6]. The aim of this
paper is to provide a general multiagent model based on DOLCE to represent the en-



tanglement of several layers of information in socio-technical systems. The systematic
treatment of these aspects of socio-technical systems is, up to our knowledge, the most
original contribution of this paper.

The guiding examples of this paper are taken from the organization of an airport.
This is motivated by the fact that, although an airport is certainly a very complex sce-
nario and it is very difficult to provide an exhaustive model that captures all its aspects,
it is a type of system that exhibits all the difficult features that our modeling aims at
least to formally grasp. Thus, airports provide the right examples and counterexamples
to the project that we pursue. Such socio-technical system involves several types of
agents, surveillance cameras, security officers, customers, who interact and share infor-
mation of different kinds, for example information coming from cameras, procedural
information concerning rules, information that can only be indirectly inferred.

The remainder of this paper is organized as follows. In Section 2, we discuss the
connection between low-level information coming from vision and high-level informa-
tion contained in agents’ knowledge bases. Section 3 presents our ontological modeling
of socio-technical systems. In Section 4 we deal with the issue of how to integrate
the information coming from different agents and we propose procedures that define
systemic information. Section 5 concludes and points at the required steps in order to
develop the conceptual analysis that we have presented.

2 Linking computer vision and propositional information

Modeling the connection between propositional information and visual information is
a difficult task to approach. This problem is related to some of the classical problems
in AI that are known by a number of keywords, such as the symbol grounding prob-
lem [17] and symbol anchoring [5] and it is in general connected in computer vision to
the problem of interfacing statistical and discrete information [8]. In computer vision,
a label denoting a scene (e.g. “the plane has landed”) is associated to a process that
models the interaction of several features usually expressed by a graphical model [19].
More specifically, Bayesian Networks (BN) have been widely adopted in vision sys-
tems as they are applicable to all levels of processing, from the extraction of low-level
actions (e.g., running, walking) to more complex high-level reasoning (e.g., Mark runs
and then walks); essentially, they embed a mapping into a graph structure so that the
nodes represent concepts or parameters of interest and dependencies are given by edges.
Their diffused use is due to fast numerical updating in singly connected trees and to the
availability of techniques to decompose complex models into simpler ones, adopting
heterogeneous learning techniques [24]. Bayesian networks can be learned and model
dependencies for either static (BBN) or dynamic (DBN) domains. A simple DBN with
single conditional dependencies over time, the Hidden Markov Model, is often used
for speech analysis [26] and has been extensively adapted for heterogeneous applica-
tions in the Computer Vision realm [23]. Bayesian Networks are the workhorses for
the automated surveillance community: in most cases, different activities correspond to
different BNs; they are trained in advance, and employed afterwards in classification
tasks, aimed at discovering usual or abnormal activities. One of the main limitations of
this philosophy, i.e., describing high-level activities employing BNs, is their scarce ex-



pressivity: the usual architecture of a surveillance system builds upon a low-level layer
in which simple actions are recognized (run, walk, sit); these outputs, expressed in the
form of posterior probabilities, are fed into a mid-level layer of the network which con-
nects them considering spatio-temporal relations: an individual can walk for a minute,
and in the meantime he/she can talk with another guy, or he/she can make a phone call.
In practice, this layer gives as output a set of BNs, one for each activity; in turn, each
BN generates a posterior probability, depending on how well the structural knowledge
embedded in the network fits the visual data. The high-level layer of the surveillance
system performs the final classification, recognizing as ongoing activity the one which
corresponds to the BN with the highest posterior probability. As a matter of fact, the
kind of understanding provided by this architecture is limited: in one sense, it is fixed,
enclosed in a graphical model which describes conditional dependencies among ran-
dom variables, whose structure is decided a priori, drawn by hand from the researcher.
In another sense, it is limited, since it is restricted to a set of available activities that
have to be recognized. In order to interface visual and propositional information, we
want to associate the set of BNs that describes the activity of a camera with a knowl-
edge base consisting of formulas that are defined by means of the predicates specified
in our ontology. The knowledge base contains a set of low-level propositions that are
directly connected with the BNs as well as higher level propositions that can be inferred
by means of the ontological definitions. For example, “there is a queue at gate 8” is a
perceptual proposition that is triggered by the BN, whereas “the boarding at gate 8 has
started” is a proposition that can be inferred on the basis of the previous visual proposi-
tion. This methodology aims to extend the limitation of the BN approach by integrating
information that can be inferred by means of a knowledge base. One of the challenges
of this work is to understand how the information coming from a BN, which is proba-
bilistic, entails the assumption that a certain proposition holds in the knowledge base.
In particular, a BN provides a degree of probability that the proposition that describes
a scene is true or false (e.g. “an aircraft is landing on runway 4 with a probability of
75%”). Our approach is the following. As we are interested in providing human agents
with a tool that assists their activity in monitoring the system, propositional informa-
tion that becomes available to human agents should be as simple as possible. Thus, we
associate probabilistic BNs with discrete information (true or false) concerning the cor-
responding propositions, by defining a threshold of the degree of reliability provided by
the BN that is sufficient to accept the proposition. The thresholding mechanism is also
well founded under a Bayesian point of view, since it corresponds to the cost associ-
ated to a particular classification output [7]. Moreover, the reliability of the information
coming from vision shall be discussed at systemic level as a problem of aggregating
possibly divergent sources of information. For example, the reliability provided by the
BN corresponding to a particular camera has to be confronted with othersf pointing at
the same object and to other agents in the system. That is, the thresholding problem has
to be dealt with at a systemic level. We shall discuss how to integrate possibly divergent
information in Section 4.



3 Ontological analysis: DOLCE

In order to describe agents’ information in socio-technical systems, we need to integrate
visual, conceptual, factual and procedural information. We propose to use the DOLCE
ontology as integrating framework. The methodology employed in the construction of
the DOLCE ontology is the following. Firstly, we define basic properties and relations,
that are generic enough so to be common to all specific domains, like being an en-
durant (more simply, an object), being a perdurant (an event), being a quality or being
an abstract (entity), one entity being part of another, an object participating to an event
or having a certain quality. . . Then, we specify different modules, like the mental or
the social module, that are composed by entities that share some characterizing fea-
tures. For example, mental entities are characterized by being ascribable to intentional
agents and social entities are characterized by the dependence on collectives of agents.
These conceptual relations specify the definitions of the basic entities in our ontology,
e.g. roles are properties of a certain kind that are ascribable to objects. Finally, we in-
troduce domain specific concepts that specify more general concepts belonging to all
these modules (like “an aircraft is a physical object”).

We begin by presenting the general ground ontology; this is meant to be not context
sensitive and to provide a shared language to talk about some fundamental properties
of concepts and entities. In this sense, the ontology provides a general language to
exchange heterogeneous information and may be used as vocabulary to define com-
munication languages for agents3. We are here interested in presenting the descriptive
features of DOLCE rather than in complexity or implementability issues. Notice that in
[21] an appendix may be found with more implementable but less expressive versions
of DOLCE, that are called DOLCE-Lite.

3.1 Foundational ontology

We present some features of DOLCE-CORE, the ground ontology, in order to show that
they allow for keeping track of the rich structure of information in a socio-technical
system. For an introduction to DOLCE-CORE, we refer to [2], here we simply point at
the relevant features.

The ontology partitions the objects of discourse, labelled particulars PT into the
following six basic categories: objects O, events E, individual qualities Q, regions R,
concepts C, and arbitrary sums AS. The six categories are to be considered rigid, i.e. a
particular cannot change category through time. For example, an object cannot become
an event. In particular, we shall focus on the following categories.

Objects represent particulars that are mainly located in space, e.g. the aircraft 777,
the gate 6, the queue at gate 6. On the other hand, events have properties that are mainly

3 Ideally, this is not the case, as in multiagent systems agents can be heterogeneous under many
respects, including the adoption of different languages and also of different ontologies. The
strong requirement should be that their ontologies are well founded, so that their underlying
assumptions are explicit enough as to enable communication and exchange of information via
“connecting axioms”. In the current paper, for the sake of simplicity, we will assume that all
agents in the system share the same ontology, DOLCE.



related to time, e.g. landing, the boarding of flight 717, the delay of flight 717. The rela-
tion that links objects and events is the participation relation: “an object x participates
in event y at time t” PC(x, y, t).

Individual qualities shall play an important role in modeling information coming
from perception, or from different agents of the system, thus we shall take a closer look
at them in the next paragraphs. An individual quality is simply an entity that we can
perceive and measure, which inheres to a particular (e.g. the length of runway A2 of
Malpensa airport, the weight of Mark’s luggage, the temperature inside waiting room
3. . . ). The relationship between the individual quality and its (unique) bearer is the
inherence: I(x, y) “the individual quality x inheres to the entity y”. The category Q is
partitioned into several quality kinds Qi, for example, color, weight, temperature, the
number of which may depend on the domain of application. Each quality kind Qi is
associated to (one or more) quality spaces Si,j that provides a measure for the given
quality. We say that individual qualities are located at a certain point of a space S at
time t: L(x, y, t): “x is the location of quality y at time t”.

Spaces allow for evaluating relationships between objects from the point of view
of a given quality. For example, “the temperature inside room 3 (q) is higher than the
temperature inside room 4 (q′)” is represented in the ontology by assuming spaces of
values with order relations and by saying that the location of the individual property q
is lower than the location of q′. Spaces may be more structured objects and they may be
specified along several dimensions4.

The axioms that define the relationships between individual qualities, locations, and
spaces state for example that every individual quality must be located in some of its
associated spaces and that the location in a particular space must be unique, cf. [2]. E.g.
the color of an object may be associated to color quality kinds with their relevant spaces
such as hue, saturation, brightness.

The category of regions R includes subcategories for spatial locations and a single
region for time, denoted T: T(x) means “x is a time location” (e.g. October 10, 2012,
12:31 PM). The relation PRE(x, t), where t is a time location, allows to specify that “x
is present at time t”. Note that in DOLCE-CORE we have that all entities exist in time:

PT(x)→ ∃tPRE(x, t)

The category of concepts shall be used in particular to model social objects. Concepts
are reified properties that allow for viewing them as entities and to specify their at-
tributes. In particular, concepts are used when the intensional aspects of a property are
salient for the modeling purposes. The relationship between a concept and the object
that instantiates it is called classification CF(x, y, t) “x is classified by concept y at
time t”.

If we represent the DOLCE taxonomy as a tree (cf. Table 1), more specific cate-
gories, such as physical objects, mental objects and so on, can be plugged into the tree
as children of the relevant categories. Summing up, there are three ways of understand-
ing properties in DOLCE-CORE and therefore there are three ways to deal with different
levels of information [2]. We can understand properties as extensional classes, as indi-
vidual qualities, or as concepts. We shall apply this distinction to our modeling task:

4 Quality spaces are related to the famous treatment of concepts in [15].



extensional predicates are used to model robust information (e.g. “waiting room 3 is
located at gate 3”), individual qualities are used to model information coming from hu-
man and artificial perception, e.g. computer vision, and concepts and roles are used to
model information about norms, social objects and organizational properties.

3.2 Individual qualities and visual information

In order to integrate the information coming from computer vision or from perceptions
of observers in the system with other types of information, we proceed as follows. We
assume that agents, both human agents and artificial agents such as surveillance cam-
eras, provide observation points of the system. For example, take a surveillance camera
that is trained in the sense of Section 2 for a specific task. We represent the features
that the surveillance camera is supposed to detect by means of individual qualities of
the object/action/event that it is focusing on. As the information coming from visual
detection may be revisable and depends on the perception of the observer, we represent
it as a specific subtype of “mental object” (MOB) (cf. Table 1), namely, we introduce
a specific category VIS that includes visual objects5. Visual objects are representations
of physical objects from the point of view of a given observer. Therefore, VIS may con-
tain a visual copy for any physical object that we may assume to be recognizable by
means of perception. We denote the elements of VIS by vP where P is a predicate that
expresses the property of the object: for example, vairplane denotes the visual represen-
tation of an instance of an airplane. The recognition of an object, the point of view of
the specific observer, and the object itself are connected by means of the following rela-
tion: V(i, x, vP , t) that means “the camera i sees the physical object x as a vP at time t”,
where in particular vP is in VIS and x is a physical object6. The particular vP provides
the visual representation of x7. For example, V(i, x, vairplane, t) means that a particu-
lar camera i sees x as vairplane, namely as the image of an airplane. From this piece of
information, we do not want to derive immediately the fact that there is an airplane at
a specific time. The inference to factual information shall be done by means of “bridge
rules” that link the recognition of an object as a certain entity and the endorsement in
our knowledge base that the entity is actually located in a given place. The bridge rules
are supposed to provide a thresholding mechanism for turning probabilistic informa-
tion coming from computer vision into factual propositional information. Bridge rules
may vary according to different scenarios or to the relevance of the particular piece of
information.

5 The cognitive module of DOLCE has been discussed in [13].
6 We present the idea for physical object. An analogous treatment, although more complex, can

be defined for events and activities.
7 This treatment presupposes the existence of the object x that provides the focus of a given

camera. Moreover, we are assuming that the individual qualities that trigger the recognition
of an object as a visual representation are qualities of the object itself and not of the image
(e.g. video sequence). This is motivated by the fact that the existence of the physical object is
assumed to be the “same” focus of possibly divergent observers. This assumption is conceptu-
ally possible in our scenario because the cameras are trained for detecting a particular object
in a specific location.



The thresholding mechanism can be represented and made explicit in our ontol-
ogy. We sketch how. Firstly, we can view the likelihood of the proposition associated
to the recognition task of a camera as a point in a specific quality space SL that mea-
sures the individual quality of likelihood QL. For example, SL can be a probability
space. We define such an individual quality as inhering to visual propositions, thus
I(V (i, x, vP , t), qL). The location of qL at a point of SL, namely L(qL, sL), expresses
the probability for observer i (e.g. a camera) of being right in classifying x as a P by
associating x to vP (i.e. the visual representation of x as a P ). Note that all the informa-
tion concerning the reliability of the particular camera can be derived by the BNs that
model the classification algorithm. Thus bridge rules have then the following form. We
assume st ∈ SL to be the reliability threshold.

V(i, x, vP , t) ∧ I(V(i, x, vP , t), qL) ∧ L(qL, s) ∧ s ≥ st → P (x)

The formula means that, if an observer i views x as a P object with likelihood s
and s is bigger than the threshold st that we have put for the reliability of V(i, x, vP , t),
then we can infer that actually x is aP object, i.e. P (x).

We can specify a number of preconditions that trigger propositions like V(i, x, v, t):
they are represented by formulas that specify locations in a number of quality spaces.
We assume that each observer i is associated with a set of individual qualities qix1, ...,
qixm of an object x, which represent the features that a specific observer is looking for,
in order to detect that object. For example, such individual qualities represent pieces of
information such as “the dimension of the object x from the point of view of camera i”.
By locating such qualities in specific regions of quality spaces, we can specify a set of
preconditions that trigger the recognition of x as v from the point of view of i.

L(q1x, s1, t1) ∧ · · · ∧ L(qnx, sn, tn)→ V(i, x, v, t)

For example, such conditions state that, according to camera i, if the dimension has
a certain value, and the shape is of a certain type, and the color is such and such, then
camera i recognizes x as an airplane. Of course the information required in order to
model the locations of the individual qualities and the relevant spaces shall be provided
by integrating the ontological analysis with the properties of the algorithm used in com-
puter vision. Moreover, note that the specific preconditions only express verbalizations
of features that are cognitively relevant. It shall include the features that are relevant
from the point of view of agents’ communication and shall not list all the features that
are actually used by the algorithm. Moreover, in case of human agents, we can repre-
sent the relevant cognitive aspects of vision by means of suitable qualities of objects
and quality spaces.

The motivation for our treatment is that it allows for handling information coming
from different observation points, or from a same observation point at different times,
by spelling out the preconditions that trigger such information. An assumption we shall
stick to is that the same camera cannot see an object in two ways at the same time:

V(i, x, v, t) ∧ V(i, x, v′, t)→ v = v′



This amounts to assuming that the algorithm for visual detection is well-defined.
However, at different times, the same camera can change the visual object that it pro-
vides, or it can even fail to recognize the object, thus we do not force more demanding
constraints on visual propositions. Moreover, we do not presuppose that different ob-
servers of the same object in the same location and at the same time have to agree on the
same recognition. Thus, for example, a camera can see an object as a person whereas
another fails to recognize it or classifies it as something else. We believe that this forms
of mismatches of information have to be made explicit in our modeling and represented
accordingly, as they are an important aspect of the interaction in socio-technical sys-
tems. We shall discuss how to handle possible mismatches of information in the next
section.

3.3 Social objects and norms

One predicate that is particularly important for modeling socio-technical systems is the
classification predicate: CF(x, y, t), meaning that “x is classified as y at time t”8. By
using CF, we can define a special type of social object, namely the notion of role.
Roles are supposed to be contextual properties, that are characterised by anti-rigidity
(AR) and foundational dependence (FD): roles are concepts that classify entities at a
certain point in time, but not necessarily classify them in each moment or each possible
world in which they are present (AR) and that require a level of definitional dependence
on another property (FD). In this sense, roles are social objects as they are grounded in
a sort of counts as.

For instance, someone who is a student at a certain point, not necessarily will be a
student all throughout his/her life and there are possible worlds in which he/she is not
a student; in order for someone to be classified as an employee, we need someone else
who is classified as an employer.

AR(x) ≡ ∀y, t(CF(y, x, t)→ ∃t′(PRE(y, t′) ∧ ¬CF(y, x, t′))

FD(x) ≡ ∃y, d(DF(x, d) ∧ US(y, d) ∧ ∀z, t(CF(z, x, t)→

∃z′(CF(z′, y, t) ∧ ¬P(z, z′, t) ∧ ¬P(z′, z, t))))

The anti-rigidity condition states that if something y is classified by the concept x
at t, then there is a time t′ such that y is present at t′ (PRE(y, t′)) but y is not classified
as x at t′. The foundational dependence is somehow more complicated. It states that a
concept x is foundationally dependent iff there is a definition of x, say d, and a concept
y such that: d defines x (DF(x, d)), the definition x uses the concept y (US(y, d)) and,
for any entity z also classified by x, there is another entity z′ that is classified by y,
which is external to z (this is expressed by means of the notion of “part”: neither z is
a part of z′, nor z′ is a part of z, (¬P(z, z′, t) ∧ ¬P(z′, z, t)). For example, the role of
security officer depends on the concept of person.

8 For an axiomatic definition of the predicates that we introduce, we refer to [22].



Given these characteristics, roles are essential to model organizations, as they allow
to talk about properties that one acquires in virtue of the fact that one is member of
an organization or has some rights/duties connected with the role he/she is playing in
that very moment. Take for instance a security officer, who is allowed to carry a gun
inside the airport terminal, but just when he/she is playing (or is classified by) the role of
security officer; if the same person enters the airport while playing the role of passenger,
he/she is no more allowed to carry a gun. The same role can be played by many entities
within the same domain (even entities of very different nature, like a human being and
a software), the same entity can play more than one role, even simultaneously (like in
airports with self-check-in stations, where the same person simultaneously plays the
role of passenger and that of check-in operator).

Further developments of ontological analysis treat also norms and plans by means
of DOLCE, cf. [1]. Here we just sketch some possible applications that show the entan-
glement of visual, factual and normative information. Our role-based analysis provides
a way to connect low-level information (e.g. coming from cameras) with high-level
information (e.g. coming from security protocols). For example, the concept of role al-
lows for making explicit the conceptual dependence of a signal of alarm triggered by
a particular scene that has been detected by cameras with the properties that are suf-
ficient to trigger that signal. For example, a “suspect”, according to our approach, can
be modeled as a role. We can impose a constraint that specifies that only entities that
are agentive physical objects (APO, cf Table 1) can be classified as suspects in our sce-
nario (according to the (FD) condition). Moreover, we can specify the description that
defines “suspect” by spelling out a set of properties, like the participation to some kinds
of events, e.g. “carrying a gun”, “entering in an unauthorized area”. Thus, if a person
(an agentive physical object) is recognized (possibly by a computer vision system that
locates a set of individual qualities in the relevant places) as possessing one or more of
these properties, he/she is classified as a suspect and this triggers an alarm. In order to
specify such a security protocol, the system should be capable of taking into account
the various layers of information involved. Consider the following example:

∃x(∃iV(i, x, vperson, t) ∧ ∃j∃yV(j, y, vgun, t) ∧ next(x, y) ∧ ¬CF(x, officer, t)

→ suspect(x, t))

The formula above means that if a camera detects a person and another detects a gun
that is next to the person (i.e. next(x, y)), and that person has not the role of a security
officer at that moment, then the person is a suspect.

Depending on the type of agent that is provided with this system, the reaction to
the alarm could be of various kinds: either send a message to some other agent that has
to follow the suspect, or activate another camera with a tracking system, for example.
That depends on the security protocol that is implemented in the system. Thus, we can
view the inference of the proposition suspect(x, t) as the alarm that triggers possible
course of actions that are specified by the security protocols P , by adding constraints
of the following form in our system.

suspect(x, t)→ P



.
By extending the ontological treatment so to include norms, plans, preconditions,

postconditions, prescriptions and so on (cf. [1]), the security protocols can be repre-
sented as formulas in our system. Obviously, a person can cease to be classified as
suspect if further properties are discovered (for instance, a new video sequence may
show that what at first appeared as a gun is in fact an umbrella, or it may show a police
sign on the back of the person who eventually turns his/her back to the camera, and after
that the same person who had been previously classified as “suspect” is subsequently
classified as police officer). In particular, roles allow for linking a higher level property
used by human agents involved in the system to low level properties that can be checked
by means of perception (either direct, performed by human agents, or indirect, obtained
by a camera).

Our role based analysis of normative information in socio-technical systems can be
applied to define and make explicit the statuses of the personnel as well as the sub-
organizations of a complex structure like an airport viewed as an organization, for ex-
ample, pilots, officers, information desks and so on. Moreover, we could extend the
treatment based on roles to concepts that may be applied to events. For example, we
can apply the concept of queue to a grouping of persons and view it as a boarding event
that is subject to the normative constraints defined by the airport protocols. The notion
of role allows in this case to distinguish, for example, queues that are part of a boarding
process from groupings or formations of persons that are due to other reasons and may
trigger a security check.

4 A multiagent setting

We have described how to represent in an abstract way the pieces of information that
are required in order to provide an analysis of socio-technical systems. In this section,
we apply a multiagent perspective in order to deal with information at systemic level.
We view agents as observation points in the system that are endowed with the reason-
ing capabilities provided by the ontology definitions in DOLCE. For example, cameras
endowed with axioms that connect visual information with high-level organization con-
cepts, as well as security officers that communicate pieces of information, are all viewed
as agents in our system. The problem that we are going to tackle is how to integrate the
possibly divergent information coming from different agents into a collective informa-
tion that is supposed to be made available at systemic level or to the relevant subsystems
that are directly involved.

4.1 Modeling socio-technical systems

In order to describe a concrete scenario for applying our ontological analysis, we enrich
the language of DOLCE by introducing a specific language to talk about the scenario at
issue. The language contains a set of constants for particular individuals CS . For exam-
ple, in the case of an airport, individual constants may refer to “the gate 10”, “the flight
799”, “ the landing of flight 747”, “the security officer at gate 10”. According to our pre-
vious analysis of visual information, we need also constants for locations of individual



qualities in their respective spaces. Moreover, the language contains a set of contextual
predicates PS that describe the pieces of information that agents may communicate in
the intended situations. In case of an airport, we need for example to include predicates
such as “being an aircraft”, “being a queue”, “being a gate”, “being a delay”, “being
a landing”, “being a security protocol” and so on. The set of predicates PS and the
set of individuals CS are partitioned according to the basic categories, concepts, and
individual qualities, etc. This is done by assuming a number of axioms that specify for
each predicate the right category. We are taking here the suggestion to view DOLCE as
a shared terminology, or Tbox, and let agents have possibly divergent knowledge bases,
namely Aboxes.

4.2 Modeling agents’ information

For the sake of simplicity, agents in our systems are modeled just as sets of (closed) for-
mulas built by means of predicates that are either in DOLCE or in the specific language
that we have sketched in the previous paragraph. This set may include information com-
ing from vision, propositions concerning social objects, norms, plans, etc. We denote
LS the language of the agents in the system: it is defined as the set of atomic formulas or
negations of atomic formulas defined on the alphabet given by PS , CS and DOLCE. We
denote an agent’s set of propositions by Ai ⊂ LS . For example, in case Ai is a surveil-
lance camera, it may contain a set of visual propositions V(i, x, v, t) that are triggered
by the detection of the relevant individual qualities9. The only general requirement that
we put on the Ais is that each Ai is consistent wrt the ontology, namely they are con-
sistent with the definitions provided in the ontological analysis. For example,Ai cannot
contain a proposition such as “a security officer is a mental object”, and so on10. Note
that the amount of information that each agent shall submit at a given moment depends
on the security protocol that is implemented in the system and on the situation at issue.
For example, not all the visual information that is provided by all the cameras shall be
continuously made available to the whole system. Moreover, we shall make the assump-
tion that the propositions provided by the agents of our system can be synchronized by
means of the temporal parameters that are attached to them. Thus, we assume that it is
possible to talk about the state of the system, or of a subsystem, at a particular moment
or during a particular interval of time11. In this section, we shall abstract from those

9 Note that we do not want the knowledge base to be closed under negative information, namely
we have to endorse an open world assumption on each Ai. This is because the fact that a
camera does not detect a man carrying a gun does not mean that we can claim that he is not
carrying a gun.

10 We are aware that the consistency assumption may be a highly demanding condition in case we
model cognitive agents. We assume it here just for the sake of simplicity, in order to directly
apply the model of the next section.

11 We are thankful to an anonymous reviewer for stressing this point. We are aware that this is a
demanding assumption. For example, synchronizing surveillance cameras and human agents’
communications may require interfacing two different time segmentations of events. We ab-
stract from this issue in order to present our analysis of systemic information and in order to
provide an easy application of social choice theoretic techniques.



important issues and we simply assume that at a given moment in time, we can take the
sets of propositions provided by the agents of the system.

4.3 Modeling systemic information

We present now our modeling of systemic information. We want to be able to check
the status of the system with respect to a number of parameters. As the sources of
information are heterogeneous, namely each agent of the system provides his/her set of
propositions, the problem of evaluating the state of the system as a whole can be viewed
as a problem of integrating heterogeneous information. We shall model this issue by
means of techniques developed in social choice theory [4], belief merging [18], and
judgment aggregation [25, 20, 11]. The reason is that, as we shall see, those techniques
provide versatile tools to model aggregation of heterogenous types of information and
they allow for spelling out the properties of each type of aggregation procedure. The
properties that we are going to discuss shall provide a qualitative evaluation of the
information of a system in a given moment.12

In a complex system like the one we are depicting, there may be several sources of
disagreement between agents. For example, a possible disagreement may be at the level
of perceptual information. Imagine three cameras that are pointing at the same scene,
and such that two of them recognize an object as a gun, whereas the third does not.
Furthermore, agents’ knowledge bases can contain conflicting high-level information
on the roles involved, and it is not clear where to place the source of disagreement.

The ontological analysis allows us to classify the types of information, thus the
question is how to define suitable procedures to solve the different types of disagree-
ment, e.g. normative, prescriptive, or visual. We briefly sketch our model. Suppose the
system consists of a set N of n agents. Denote A(LS) the set of all possible sets of
atomic formulas in our language LS that are consistent with the ontology. A profile of
agents knowledge bases is given by a vector (A1, . . . , An), we denote it A. An aggre-
gation procedure is a function F : A(LS)n → P(LS) that takes a profile of agents’
knowledge bases and returns a single set of propositions. The set of propositions F (A)
represents then the systemic information according to the procedure F .

Whenever we want to consider the collective information of a particular subsystem,
we simply restrict the profile A to the relevant agents and define F accordingly.

The ontological analysis allows us to partition the set of propositions in LS into
their respective types. For each predicate P in our language, we can easily check by
means of DOLCE whether P is a social concept, a visual concept, a basic concept and
so on. This is one of our motivations for using an ontology. Since every proposition in
the Ai is an atomic formula or a negation of an atomic formula, we can easily extend
the classification of predicates in order to partition the agents’ propositions into visual,
conceptual and factual propositions.

Given a set of formulas Ai, we denote AVi , ACi , AFi , the visual, conceptual and
factual propositions (respectively) that are contained in Ai. Accordingly, we partition
12 The methodology we propose is motivated by our intention of providing an analysis of the

quality of systemic information depending on a number of parameters. Although the aggrega-
tion process is centralized, more plausible, and possibly feasible, distributed mechanisms that
provide the same collective information can be defined. We leave this point for future work.



profiles wrt their type of information; we denote them AV , AC , AF . We shall discuss
aggregators that take profiles restricted to one of the types of propositions, namely, we
define aggregation functions FV : AV 7→ AV , FC : AC 7→ AC , and FV : AF 7→ AF .

We introduce and discuss a number of properties of aggregators that have been
widely studied in judgment aggregation and social choice theory. In particular, the ap-
plication of social choice theory and judgment aggregation to ontology merging has
been developed in [25], where a number of aggregation procedures for aggregating
Tboxes and Aboxes are defined. In what follows, we present some arguments to evalu-
ate to what extent those properties are relevant for our modeling tasks.

Unanimity. An aggregator F is called unanimous if A1 ∩ · · · ∩ An ⊆ F (A) for every
profile A ∈ A(LS)n.

Anonymity. An aggregator F is called anonymous if for any profile A ∈ A(LS)n
and any permutation σ : N → N of the agents, we have that F (A1, . . . , An) =
F (Aσ(1), . . . , Aσ(n)).

Independence. An aggregator F is called independent if for any formula φ ∈ LS and
any two profiles A,A′ ∈ A(LS)n, we have that φ ∈ Ai ⇔ φ ∈ A′

i for all agents
i ∈ N implies φ ∈ F (A)⇔ φ ∈ F (A′).

Neutrality. An aggregator F is called neutral if for any two formulas φ, ψ ∈ LS and
any profile A ∈ A(LS)n, we have that φ ∈ Ai ⇔ ψ ∈ Ai for all agents i ∈ N
implies φ ∈ F (A)⇔ ψ ∈ F (A).

Monotonicity. An aggregator F is called monotonic if for any agent i ∈ N , formula
φ ∈ LS , and profiles A,A′ ∈ A(LS)n such that Aj = A′

j for all j 6= i, we have
that φ ∈ A′

i \Ai and φ ∈ F (A) imply φ ∈ F (A′).

Unanimity implies that if the agents of the system agree on a proposition φ, then φ
is accepted at systemic level. We claim that unanimity is a desirable property of any
aggregator, regardless the specific type of propositions. As agents are the observation
points of the system, and our knowledge of the system is provided by means of agents’
information, a violation of unanimity would amount to discharging information for no
apparent reason (i.e. no agent against).

Anonymity implies that all agents are treated equally, namely, that we have no reason
to weight the information coming from an agent more than from another. This require-
ment is desirable when we cannot (or we do not want to) distinguish the reliability of
agents. For example, we may not want to distinguish the information provided by two
security officers that are communicating on the ground of the higher reliability of the
first wrt the reliability of the second. In case of visual information, anonymity may not
be desirable. For example, we want to weight the information coming from a trained se-
curity officer more than the information coming from a surveillance camera. Whenever
appropriate, this is intended to model the fact that human agents may double check out-
comes coming from artificial agents and human agents are assumed to be more reliable
than artificial ones, at least in a number of tasks.

The condition of independence means that the acceptance of a formula at systemic
level only depends on the pattern of acceptance in the individuals’ sets (e.g. the number
of agents who accept φ). That is, the reason for accepting φ should be the same in any
profile. Independence is a more demanding axiom than the previous two; whether or not



it should be imposed is debatable. A domain of application for which it is desirable is to
merge normative information, see [20]. For example, suppose that the security protocol
of the airport prescribes to an officer to fire if and only if conditions c1 and c2 hold.
Suppose such conditions have to be checked by the relevant committee of agents. In
that case, we do not want the outcome of the decision to depend on a particular scenario
(i.e. profile), rather a form of impartiality should be respected. On the other hand, there
are cases in which the number of agents supporting φ is not a good criterion for any
profiles; we shall present an example below.

Neutrality requires that all the propositions in the system have to be treated sym-
metrically. We believe that this is not desirable for our purpose in general, as we want
to treat visual, factual and conceptual information according to different criteria. More-
over, there are reasons to weight certain propositions more than others even in case they
belong to the same class. For example, the proposition that states that an object has
been seen as a gun by a surveillance camera should be considered as highly sensible
and therefore it should be taken into account at systemic level. Monotonicity implies
that agents’ additional support for a proposition that is accepted at systemic level will
never lead to it being rejected. This property is desirable in most of the cases, provided
the relevant agents are involved.

A further requirement that is usually viewed as a desirable property is the consis-
tency of the systemic information.

Consistency An aggregator F is consistent if for every profile A ∈ A(LS)n, the set
F (A) is consistent with the ontology.

It is well-known that not every aggregator that satisfies the properties that we have
seen guarantees consistency. In particular, an aggregator that satisfies anonymity, in-
dependence, and neutrality may return inconsistent outcomes, cf. [20]. For example,
merging information by means of the majority rule or by a quota rule may lead to in-
consistent sets of propositions13.

For the sake of example, we introduce a class of aggregators to model systemic
information that is adapted from [25]. We leave an exhaustive discussion of types of
aggregators for future work. We thus present a class of procedures that can be tailored
for aggregating information in our scenario. Given a set of propositions X ⊆ LS , we
define a priority order on formulas in X as a strict linear order on X . Several priority
orders can be defined on X , for example a support order >S ranks the propositions
according to the number of agents supporting them: φ >S ψ iff the number of agents
supporting φ is greater than the number of agents supporting ψ (provided a tie-breaking
rule for propositions with equal support). Moreover, we can define a priority order on
propositions that depends on the reliability of the agents that support them. Given the
set of agents N , we define the expert agents as a subset E ⊂ N . Thus, the reliability
priority may be defined as φ >R ψ iff the number of experts supporting φ is greater than
the number of experts supporting ψ. We may also introduce more stringent conditions

13 These results depend on the structure of the language that the agents use. It is enough to
include some minimal logical connection to generate inconsistent outcomes, cf. [20]. Even if
the propositions in the agents’ sets are atomic, we are evaluating consistency wrt the ontology,
that contains complex propositions.



by imposing that φ has higher priority than ψ if the very experts that support φ also
support ψ.

Definition 1 (Priority-based procedures). Given a priority order >X , the procedure
based on >X is the aggregator mapping any profile A to F (A) := S for the unique set
S ⊆ LS for which (i) φ ∈ S, where φ is the top proposition according to >X ; (ii) if
S ∪ {ψ2}, ψ1 ∈ S, ψ1 >X ψ2 and is consistent, then ψ2 ∈ S.

Thus, a priority-based procedure tries to provide a consistent outcome by check-
ing the relevant information according to the priority. That is, the procedure tries to
discharge conflicting information with a lower priority. For priority based procedures,
neutrality or anonymity may be violated by the priority order. Independence is also
violated (because φ may cease to be accepted if a formula it is contradicting receives
additional support). Moreover, such procedures are consistent by construction. The pri-
ority order is supposed to represent the importance of the property for the system. For
example, the proposition that states the recognition of an object as a gun should receive
high priority in our ordering. This amounts to assuming that the propositions concern-
ing the presence of weapons are taken as true even if few agents actually support their
truth. This may be appropriate for example in a risk averse security protocol that tries
to minimize the occurrence of worst case scenarios.

Priority based procedures allow for weighting the information according to the re-
liability of different sources. For example, we can weight the information coming from
security officers, that are viewed as experts, more than information coming from surveil-
lance cameras. Moreover, we can weight the reports of cameras that are closer to the
location at issue more than the information coming from other cameras.

Thus, priority based procedures may be used to define aggregators that provide
collective information on visual propositions: FV : AV 7→ AV . Moreover, a priority
order based on the reliability of agents can be used to merge factual information FV :
AF 7→ AF , provided we single out the right class of experts in our system. A number of
aggregation procedure that single out the more reliable agents in the system have been
developed in [10]. Note that it may be hard to compute the systemic information, given
the required consistency check. The complexity depends of course on the language that
we use to implement our ontology, a study of the complexity of computing problems
related to judgment aggregation has been presented in [11].

It is interesting to point at an application of non-consistent aggregators, namely
aggregators that return inconsistent sets of propositions. By using the analysis of ag-
gregators provided by judgment aggregation, it is possible to pinpoint the places where
the inconsistencies in the system are generated. In particular, aggregators that may re-
turn inconsistent information are useful to pinpoint causes of normative or conceptual
disagreement, namely to analyze incompatibility of norms or concepts defined in the
system with the collective information gathered by the agents.

We stress that the properties of aggregation procedures that we have introduced can
be viewed as normative constraints on the procedure that settle possible disagreements
as well as qualitative constraints on the collective information. Agents may be willing
to cooperate and accept the outcome of an aggregation procedure, namely a collective
decision that may diverge with respect to their own individual stance, in case the pro-
cedure satisfies properties that they evaluate as desirable. In this sense, the properties



of aggregation procedures provide arguments and justification addressed to the indi-
viduals for the collective outcome. We simply mention that it is, at least in principle,
possible to include descriptions of aggregation procedures as specific norms in our on-
tology (cf. Table 1) and to model agents that discuss about aggregation procedures. This
would make the acceptance of the coordination of diverging agents a matter of explicit
discussion and acceptance within the system. This type of coordination is useful when
modeling collective decisions that are taken in cases that are not covered by the standard
procedures that are supposed to be known by the agents of the system.

5 Conclusion

We have depicted and discussed a number of important conceptual elements that ground
the modeling of the complex scenario of a socio-technical system. We have seen that in
order to provide a faithful representation of agents’ and systemic knowledge, we need
to characterize agents endowed with visual, cognitive and social capabilities, as well
as systemic procedures that handle complex interactions and systemic information. We
have argued that the ontological analysis allows for specifying the types of information
involved in the system and we have used DOLCE to classify and partition the proposi-
tions that represent the different types of information. We have proposed the application
of techniques from social choice theory and belief merging in order to define and ana-
lyze several concepts of systemic information, that depend on the type of information
that has to be integrated. We stress that the analysis that we have introduced can serve
as a theoretical framework for evaluating procedures for integrating heterogeneous in-
formation.

Future work shall focus in particular on two directions. Firstly, we will extend the
ontological analysis to model agents that are endowed with a set of actions that depend
on the information state. For example, agents can send an alarm signal in case they can
infer that a person is a suspect, they can communicate pieces of information to other
agents, they can ask questions to other agents, they can ask other agents to perform
tasks, they can prescribe actions to be taken (e.g. “close the gate 12”), etc. For instance,
an observation point i can see that a person is getting close to a security area and it
sends this information to agent j who can check if such information holds also on the
basis of his/her visual input. Moreover, i can ask other agents to track the path of the
person who has been recognized as a suspect. This extension shall provide an ontology
based communication protocol for socio-technical systems.

Secondly, we plan to extend our treatment of systemic information by discussing
more general classes of functions that aggregate agents’ information and by viewing the
composition of a number of aggregation procedures as describing the hierarchical struc-
ture of a rich system. Moreover, it is important to introduce mechanisms that capture
the procedural aspects of agents’ interaction, e.g. negotiation, dialogues, deliberation.
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