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Abstract. Weighted Threshold Operators are n-ary operators that com-
pute a weighted sum of their arguments and verify whether it reaches
a certain threshold. They have been extensively studied in the area of
circuit complexity theory, as well as in the neural network community
under the name of perceptrons. In Knowledge Representation, they have
been introduced in the context of standard Description Logics (DL) lan-
guages by adding a new concept constructor, the Tooth operator (∇∇).
Tooth expressions can provide a powerful yet natural tool to represent
local explanations of black box classifiers in the context of Explainable
AI. In this paper, we present the result of a user study in which we eval-
uated the interpretability of tooth expressions, and we compared them
with Disjunctive Normal Forms (DNF). We evaluated interpretability
through accuracy, response time, confidence, and perceived understand-
ability by human users. We expected tooth expressions to be generally
more interpretable than DNFs. In line with our hypothesis, the study
revealed that tooth expressions are generally faster to use, and that they
are perceived as more understandable by users who are less familiar with
logic. Our study also showed that the type of task, the type of DNF, and
the background of the respondents affect the interpretability of the for-
malism used to represent explanations.

Keywords: Threshold operators · Explainable AI · Interpretability ·
User study

1 Introduction

Predictive models based on machine and deep learning techniques have become
ubiquitous in many decision making scenarios. Whilst these models are typically
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very performative, they behave like black boxes, lacking transparency and lead-
ing to unfair and discriminative outcomes [23]. To this end, a lot of attention has
been given to approaches that can explain black box models to increase trust by
all users in why and how decisions are made [2,5,21].

Explainable AI (XAI) has been identified as a key factor for developing trust-
worthy AI systems [2,6]. The reasons for equipping AI systems with explanation
capabilities are not only limited to enable diagnostics to prevent bias, unfairness,
and discrimination [8], but also to user rights and acceptance (e.g., see Article
22 of the GDPR law [24]).

XAI focuses on developing approaches for explaining black box models by
achieving good explainability without sacrificing system performance [18]. One
typical approach is the extraction of local or global post-hoc explanations that
approximate the behaviour of a black box model by means of an interpretable
proxy. For instance, LIME is a local post-hoc explanation approach that explains
model instances by means of linear expressions [26]. Other approaches advocate
a tighter integration between symbolic and non-symbolic knowledge, e.g., by
combining symbolic and statistical methods of reasoning [9,17].

Symbolic knowledge plays a key role for the creation of intelligible explana-
tions. In [9], it has been shown that the integration of DL ontologies in the creation
of explanations can enhance the perceived interpretability1 of post-hoc explana-
tions by human users. Furthermore, linking explanations to formal background
knowledge brings multiple advantages. It does not only enrich explanations (or
the elements therein) with semantic information—thus facilitating common-sense
reasoning—, but it also creates a potential for supporting the customisation of the
levels of specificity and generality of explanations to specific user profiles [19].

Motivated by the conventional wisdom that disjunctive normal form (DNF)
is considered as a benchmark in terms of both expressivity and interpretability of
logic-based knowledge representations [12], we assume to have local explanations
of black box models modeled as a DNF formula. An example explanation from
a loan agent could be: ‘I grant a loan when the subject has no children and is
married or when he has high income range’ (i.e., (¬Parent � Married) � Rich).
Prior works raised the questions of whether DNF is always the most interpretable
representation, and whether alternate representation forms enable better inter-
pretability [4,12]. In particular, [4] evaluated several forms of DNFs in terms of
their interpretability when presented to human users as logical explanations
for different domains of application. In this work we aim at comparing the
intepretability of DNFs and threshold operators.

Weighted Threshold Operators are n-ary operators which compute a weighted
sum of their arguments and verify whether it reaches a certain threshold. These
operators have been extensively studied in the area of circuit complexity theory
(see e.g., [30]), and they are also known in the neural network community by per-
ceptrons (see e.g., [3]). Threshold operators have been studied in the context of
Knowledge Representation and integrated within DLs in [25], by adding a novel

1 Interpretability describes the possibility to comprehend a black box model and to
present the underlying basis for decision-making in a way that is understandable to
humans [13].
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concept constructor, the “Tooth” operator (∇∇). From now on, we shall use, more
specifically “tooth operators” and “tooth expressions”. Tooth operators allow for
introducing weights into standard DL languages to assess the importance of the
features in the definition of the concepts. For instance, as we shall see, the concept
∇∇1((Parent,−1), (Rich, 2), (Married, 1)) classifies those instances for which the
sum of the satisfied weighted concepts reaches the threshold 1.

In the context of XAI, tooth expressions provide a powerful yet natural tool
to represent local explanations of black box classifiers. In [14,16] a link between
tooth-expressions and linear classifiers has been established, where it is shown
that tooth-operators behave like perceptrons. More precisely, a (non-nested)
tooth expression is a linear classification model, which enables to learn weights
and thresholds from real data (in particular, from sets of assertions about indi-
viduals), exploiting standard linear classification algorithms. Thus, they could
be used to represent post-hoc local explanations. Furthermore, adding tooth
operators to any language including the booleans does not increase the expres-
sivity and complexity of the language. Tooth expressions are indeed equivalent
to standard DNFs,2 i.e., canonical normal form of logical formulas consisting
of a disjunction of conjunctions of literals [16]: they are ‘syntactic sugar’ for
languages that include the booleans. They allow, however, for crisper formulas,
being thus less error-prone and, putatively, more understandable by users.

In this paper, we present the results of a user study we conducted to measure
the interpretability of tooth expressions versus their translation into standard
DNFs. In the user study, respondents were asked to carry out different clas-
sification tasks using concepts represented both as a tooth-expressions and as
DNFs. In line with previous works evaluating the interpretability of explanation
formats (e.g., [1,4,9,10,20]), we used the metrics of accuracy, time of response,
and confidence in the answers as a proxy for evaluating the interpretability of
the two representations. We expected that tooth expressions could be perceived
as more interpretable. In line with our hypothesis, our study revealed that the
type of task, the background of the respondents, and the size of the DNF formula
affect the interpretability of the formalism used.

2 Background

2.1 Tooth Operator - Preliminary Definitions

In this section, we delineate the formal framework necessary to introduce ∇∇
(Tooth) expressions. Following the work done in [25], we extend standard DL
languages with a class of m-ary operators denoted by the symbol ∇∇ (spoken
‘tooth’). Each operator works as follows: (i) it takes a list of concepts, (ii) it
associates a weight (i.e., a number) to each of them, and (iii) it returns a complex
concept that applies to those instances that satisfy a certain combination of
concepts, i.e., those instances for which, by summing up the weights of the
satisfied concepts, a certain threshold is met. More precisely, we assume a vector

2 More precisely, non-nested tooth-expressions are not able to represent the XOR.
Nested tooth can however overcome this difficulty.
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of m weights �w ∈ R
m and a threshold value t ∈ R. If C1, . . . , Cm are concepts

of ALC, then ∇∇t
�w(C1, . . . , Cm) is a concept of ALC∇∇. For C ′

i concept of ALC,
the set of ALC∇∇ concepts is described by the grammar:

C :: = A | ¬C | C � C | C � C | ∀R.C | ∃R.C | ∇∇t
�w(C ′

1, . . . , C
′
m)

To better visualise the weights an operator associates to the concepts, we
often use the notation ∇∇t((C1, w1), . . . , (Cm, wm)) instead of ∇∇t

�w(C1, . . . , Cm).
The semantics of ALC∇∇ just extends the usual semantics of ALC to account

for the interpretation of the Tooth operator, as follows.
Let I = (ΔI , ·I) be an interpretation of ALC. The interpretation of a ∇∇-

concept C = ∇∇t((C1, w1), . . . , (Cm, wm)) is:

CI = {d ∈ ΔI | vI
C(d) ≥ t} (1)

where vI
C(d) is the value of d ∈ ΔI under the concept C, defined as:

vI
C(d) =

∑

i∈{1,...,m}
{wi | d ∈ CI

i } (2)

We refer the interested reader to [14,15,25] for a more precise account of the
properties of the operator.

In the context of Knowledge Representation, tooth expressions provide a
powerful tool to represent concepts. Tooth operators have indeed been applied in
DL with a variety of goals. As already mentioned, in [14,16] a link between tooth-
expressions and linear classifier has been established. In [16], in particular, it
was shown that even simple tooth-expressions are expressive enough to represent
complex concepts derived from real use cases in the context of the Gene Ontology.

Tooth operators are also useful in the representation of different cognitively
relevant phenomena related to human concept combination and categorisation
[27,28]. More precisely, the representation of tooth expressions is inspired by
the design of Prototype Theory [29]. Tooth operators, and generally weighted
logics [22], are thus more cognitively grounded than standard logic languages,
allowing for a representation of concepts that is, arguably, more in line with the
way humans think of them.

In particular, Tooth expressions are equivalent to standard DNFs, i.e., canon-
ical normal form of logical formulas consisting of a disjunction of conjunctions
of literals [16].

Let us imagine, for instance, to model the explanation for approving a loan
from a loan agent, as described in the Introduction, by means of the tooth-
operator. This could be captured through an axiom using a tooth expression as
follows: ∃isGranted.Loan 	 ∇∇1((Parent,−1), (Rich, 2), (Married, 1)).

The practical advantages for knowledge acquisition and cognitive science are
thus gained without any increase in computational complexity: adding Tooth
operators to ALC does not increase the expressivity of the language. The reason
is that ALC is closed under Boolean operators, so any Tooth concept can be
translated into a DNF of concepts of ALC, see ([25], Sec. 3.1). Moreover, any
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ontology in ALC plus Tooth concepts can be translated into an ontology in the
language of ALC, see ([14] Sec. 2).

By representing our running example by D = ∇∇1((A,−1), (B, 2), (C, 1)),
we show that it is extensionally equivalent to the DNF (¬A � C) � B. In one
direction, if d ∈ ((¬A�C)�B)I , then d ∈ (ΔI \AI)∩CI or d ∈ BI . In the first
case, d scores 1 because d ∈ CI ; in the second case, d scores 2 because d ∈ BI .
Therefore, in both cases, vI

D(d) ≥ 1, so d ∈ DI = ∇∇1((A,−1), (B, 2), (C, 1))I .
In the other direction, suppose by contraposition that d /∈ ((¬A � C) � B)I .

So d /∈ (ΔI \ AI) ∩ CI and d /∈ BI . We have two cases, if d /∈ (ΔI \ AI), then
d ∈ AI , so d scores -1. Since d /∈ BI , d does not score 2, so vI

D(d) < 1. If d /∈ CI ,
then d does not score 1, and since d /∈ BI , again vI

D(d) < 1. Thus, in both cases,
vI

D(d) < 1, so d /∈ DI = ∇∇1((A,−1), (B, 2), (C, 1))I .

2.2 Disjunctive Normal Forms - Preliminary Definitions

A disjunctive normal form (DNF) is a logical formula consisting of a disjunction
of one or more conjunctions, of one or more literals. It can also be described as
an OR of ANDs, as the only propositional operators in DNF are the and (∧),
the or (∨), and the negation (¬). In our study, we used DL symbols (�, �) to
interpret conjunctions and disjunctions of concepts.

Henceforth, we will follow the definitions proposed by Darwiche and Marquis
[12]. Accordingly, DNF is a strict subset of the Negation Normal Form language.
An NNF formula can be characterised as a rooted, directed, acyclic graph, where
each leaf node is labeled with a propositional variable or its negation, and each
internal node is labeled with a conjunction or a disjunction. A DNF is a flat
NNF, i.e., an NNF whose maximum number of edges from the root to some
leaf is 2. Moreover, DNFs satisfies the property of simple conjunction, i.e., each
propositional variable occurs at most once in each conjunction. An example is
provided in Fig. 1.

One can consider different NNF subsets by imposing one or more of the fol-
lowing conditions on the formulas: (i) Decomposability : an NNF is decomposable
(DNNF) iff for each conjunction in the NNF, the conjuncts do not share vari-
ables. Each DNF is decomposable by definition. (ii) Determinism: an NNF is
deterministic (d-NNF) iff for each disjunction in the NNF, every two disjuncts
are logically contradictory. (iii) Smoothness: NNFs satisfy smoothness (sd-NNF)
iff for each disjunction formula, each disjunct mentions the same variables. When
looking at DNF, the class of formulas satisfying determinism and smoothness is
called MODS.

In what follows, we will consider three sets of DNF, obtained by adding
different conditions on the formulae (and leading to formulas of different sizes).

– DNF1: Simple (decomposable) DNFs (DNF1 � DNNF ), corresponding to
the shorter formulas. The only requirement for the formulas is to satisfy the
property of simple conjunction. See (i) in Fig. 1 for an example.

– DNF2: Deterministic DNFs (DNF2 � d − NNF ), for which each couple
of disjuncts is required to be logically contradictory. See (ii) in Fig. 1 for an
example.
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Fig. 1. Three different variants of the same DNF modeling the running example.

– DNF3: Deterministic, smooth DNFs (DNF3 � MODS), corresponding to
the longest possible DNFs. DNF3 collect all the formula models. See (iii) in
Fig. 1 for an example.

3 Evaluating the Interpretability of Explanations

The notion of interpretability of symbolic representations has gained popularity
in recent years (e.g., [1,4,20]), also due to an increasing interest in Explain-
able AI. How to precisely characterise interpretability is however far from being
obvious, and there is, in general, no consensus on a precise definition.

From now on, we adhere to the taxonomy of interpretability evaluation pro-
posed by Doshi-Velez and Kim [13] which supports using ‘human-grounded met-
rics’ with real users to evaluate the perceived quality of an explanation. Accord-
ing to this view, the evaluation focuses on the perceived interpretability of expla-
nations rather than in their mechanistic creation. Thus, it is not important how
the explanations are computed, but whether these explanations are perceived as
interpretable by humans.

To operationalise this idea, different strategies have been adopted in the lit-
erature (see e.g., [1,9,20]). In order to measure the interpretability of an expla-
nation, subjects are usually asked to perform the same task (often, a classifica-
tion task) using different explanation formats. Across the different studies, the
evaluation metrics can then vary, but they normally range between four met-
rics, namely accuracy (how many times did the subjects reply correctly), time of
response (how fast they were in carrying out the task), confidence (how confident
did they feel in their reply), and perceived understandability (to what extent an
explanation is perceived as understandable by the user). In [20], for instance, the
interpretability of decision tables, binary decision trees, and propositional rules
is measured by combining the metrics of accuracy, time of response, and confi-
dence. Allahyari and Lavesson [1] focus on the interpretability of decision tree
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models and rule-based models, using the perceived understandability as the only
metric for the evaluation. The metrics of accuracy, time of response, confidence,
and perceived understandability are taken into account in [9] to measure the
interpretability of decision trees. More precisely, the paper extends Trepan [11],
an algorithm that explains ANNs by means of decision trees, to include ontolo-
gies that model domain knowledge when generating explanations. The paper
shows that decision trees generated taking into account domain knowledge are
perceived as more understandable by users.

Booth et al. [4] compare different propositional theories and evaluates their
interpretability in different domains of application. To the best of our knowledge,
[4] constitutes the most thorough attempt to evaluate the interpretability of
different logical languages in terms of human-grounded metrics. In their study,
the authors presented subjects with natural language explanations translating
different propositional languages (varying from DNFs, CNFs and other variations
of NNFs), across different domains. They thus evaluated subjects’ comprehension
of these explanations in terms of accuracy, confidence, and time of response. They
observed that while decomposability resulted in a statistically significant increase
in confidence, simple conjunction did not always show an effect in their dataset.
Interestingly, they also observed that the domain, in which the explanations were
presented, affected the perceived understandability of the formulas.

In the following, we present a user study that compares the interpretability
of tooth expressions and DNF formulas. In the study, respondents were asked
to carry out two tasks using Tooth expressions and DNF formula. We evaluated
the interpretability of formulas by means of accuracy in the responses, time of
response, confidence in the reply, and perceived understandability of the formula
used. To avoid any bias due to prior knowledge about a certain domain, we kept
the presentation of the input at an abstract level, that is, respondents were
provided with logical formulas not bounded to any domain in particular.

We use variables (e.g., A, B, C) for concepts occurring in the DNFs as well
as for concepts occurring in the Tooth expressions. Formally, those variables
range over concepts of ALC. However, in practice, we do not present partici-
pants concepts defined by means of restricted quantifications (i.e., ∀R.C and
∃R.C) and we focus on the Boolean operators of ALC. Moreover, concepts in
the scope of the tooth expression are simple, i.e., we do not allow for Boolean
combinations. These two simplifications allow for a direct comparison between
Tooth and DNFs. More complex cases shall be analysed in a longer dedicated
study.

4 Experimental Evaluation

The main research hypothesis in which we were interested was whether Tooth
operators are more effective and perceived as more interpretable than DNFs
by human users. More precisely, we were interested in determining under what
metrics this was the case (see Sect. 3), and for which types of DNF formulas
(see Sect. 2.2). To verify or refute this hypothesis we designed and ran a user
study.
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Fig. 2. The introductory page of the classification task for the Tooth-operator ques-
tionnaire.

4.1 Method

Materials. We used examples of concepts defined by means of DNF formulas (the
three variants) and by means of the Tooth operator. We had 6 concept definitions
of different complexities, varying in the number of symbols used and length. For
each concept, we constructed four formulas, one for each of the formats (i.e.,
DNF1, DNF2, DNF3 and Tooth expression). In this manner, we obtained 24
distinct concept definitions. We had two questionnaires, one for the DNFs and
one for Tooth expressions. In the user study, each participant was shown a total
of twelve formulas corresponding to concept definitions. That is, participants
were asked to carry out both questionnaires, in separate sessions, in random
order. Concept definitions were randomly shuffled for each of the participants in
the user study.

Procedure. The experiment used an online questionnaires on the usage of logical
formulas to carry out certain tasks. The questionnaire was run in a controlled
environment (i.e., in a classroom). The questionnaire contained an introductory
and an experimental phase. In the introductory phase, subjects were shown
a short description of either DNFs or Tooth operator, and how its semantics
is determined. Each introduction had the same duration, and consisted of the
same number of slides (and examples) for DNFs and Tooth expressions.
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The experimental phase was divided into two tasks: classification, and inspec-
tion. Each task starts with an instruction page describing the task to be per-
formed (an example for the classification task is shown in Fig. 2). In these tasks
the participants were presented with six formulas corresponding to one of the
two representations (one of the variants of the DNFs and the Tooth operator).
In the classification task, subjects were asked to decide if a certain combina-
tion of literals is an instance of a given formula (e.g., Given the formula C1 :=
(¬A�C)�B. If i is ¬A, B, and ¬C, then i is an instance of C1). In the inspec-
tion task, participants had to decide on the truth value of a particular statement,
referring to if some given conditions of an instance are necessary for the instance
to belong to a given class (e.g., Given the formula C1 := (¬A � C) � B. Having
B is necessary for being classified as C1). The main difference between the two
types of questions used in the two tasks is that the former provides all details
necessary for performing the decision, whereas the latter only specifies whether a
subset of the features influence the decision. In these two tasks, for each formula,
we recorded:

– Correctness of the response.
– Confidence in the response, as provided on a Likert scale from 1 to 7.
– Response time measured from the moment the formula was presented.
– Perceived formula understandability, as provided on a Likert scale from 1 to

7.

Participants. 58 participants volunteered to take part in the experiment. The
participants were recruited among students with different backgrounds. In partic-
ular we had two groups of students, 33 students with a background in computer
science and 25 students with a background in philosophy. Each group repeated
the questionnaire twice, once using DNFs and once using Tooth expressions. In
the analysis, we will denote these groups as GroupI and GroupII respectively.

4.2 Results

As it can be appreciated in Table 1, when looking at the two groups together,
respondents carried out both tasks correctly, performing better in the classifica-
tion task than in the inspection task. This is in line with our assumption that the
classification task was simpler than the inspection task, due to the fact that more
information was provided for making the decision. Remarkably, the influence of
the type of formula on the percentage of correct answers is not significant in our
dataset. More specifically, the answers to tasks containing DNFs are slightly more
accurate than those containing Tooth expressions, but this difference is not sta-
tistically significant. Nonetheless, we observed a significant influence (p < .0001)
of Tooth expressions on the time of response within both tasks, showing that
when using Tooth operators respondents carried out the tasks in a quicker way.
This suggests that Tooth expressions are more cognitively friendly than standard
DNFs. Interestingly, Tooth operators were perceived as more understandable in
carrying out the inspection task. Similarly, users were more confident with their
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Table 1. Mean values of correct answers, time of response, user confidence, and user
understandability for formulas represented using DNFs and Tooth operator (standard
deviations are reported in parenthesis).

Task Measure DNFs Tooth

Classification

%Correct Responses 0.91 (0.28) 0.90 (0.29)

Time (sec) 46.78 (58.90) 29.87 (20.72)

Confidence 5.74 (1.32) 5.65 (1.51)

User Understandability 5.80 (1.24) 5.55 (1.44)

Inspection
%Correct Responses 0.87 (0.34) 0.83 (0.37)

Time (sec) 28.67 (28.78) 19.78 (19.78)

Confidence 5.70 (1.32) 5.82 (1.49)

User Understandability 5.79 (1.24) 5.81 (1.43)

Table 2. Mean values of correct answers, time of response, user confidence, and user
understandability for formulas represented using DNFs and Tooth operator for GroupI
and GroupII (standard deviations are reported in parenthesis).

Group Measure DNFs Tooth

Computer Science

%Correct Responses 0.90 (0.32) 0.88 (0.31)

Time (sec) 37.29 (55.29) 25.23 (17.96)

Confidence 5.98 (1.29) 5.73 (1.71)

User Understandability 6.11 (1.17) 5.61 (1.65)

Philosophy
%Correct Responses 0.86 (0.30) 0.90 (0.34)

Time (sec) 36.39 (28.06) 24.80 (16.77)

Confidence 5.44 (1.28) 5.88 (1.15)

User Understandability 5.43 (1.20) 5.84 (1.10)

answers when using Tooth operators in the inspection task. This is in line with
our assumption that Tooth operators could be perceived as simpler represen-
tations when the task can benefit from a more compact representation of the
concepts. On the contrary, DNFs were perceived better than Tooth operators in
the classification task, and respondents were more confident with their answers.

When looking at the two groups separately (Table 2), the percentages of cor-
rect answers are slightly different when using DNFs and Tooth operators, but
this difference is again not significant. Thus, generally, we can conclude that
the type of formula used does not have any significant effects or interactions
on the accuracy of responses. Tooth operators yielded faster responses in both
groups. This seems to suggest that having more compact information, like in
the case of Tooth operators, could speed up the human decision-making process.
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Table 3. Mean values of correct answers, time of response, user confidence, and user
understandability for formulas represented using DNF1, DNF2, DNF3 and Tooth oper-
ator for both groups (standard deviations are reported in parenthesis).

Measure DNF1 DNF2 DNF3 Tooth

%Correct Responses 0.91 (0.28) 0.90 (0.30) 0.78 (0.42) 0.83 (0.38)

Time (sec) 21.03 (10.84) 25.01 (19.99) 39.97 (42.28) 19.78 (12.81)

Confidence 6.21 (1.19) 5.72 (1.20) 5.18 (1.37) 5.82 (1.49)

User Understandability 6.14 (1.00) 5.99 (1.19) 5.24 (1.34) 5.81 (1.43)

Interestingly, faster decision making can yield more correct responses, but sur-
prisingly faster decision-making is not always associated with highest perceived
understandability and highest confidence. Respondents with computer science
background were more confident with DNFs and perceived them as more under-
standable than Tooth operators. On the contrary, respondents with a background
in philosophy found Tooth operators more understandable and were more con-
fident with their answers when using Tooth operators. This behaviour can be
motivated by the fact that computer scientists were introduced to logic and DNF
formulas in their curricula, but not to Tooth operators. Thus, being more pro-
ficient in DNFs, they did not face the ‘learning curve’ in understanding a new
representation formalism such Tooth operators. Respondents with a background
in philosophy, on the other hand, studied neither DNFs nor Tooth operators.
From this study, we can conclude that Tooth operators are better representa-
tion for users who are not familiar with logic, and with DNFs in particular.

When looking at results of different DNFs vs Tooth operator (Table 3), we
can observe that simpler DNF formats, namely DNF1 and DNF2, yielded more
accurate responses. Tooth operators perform better compared to DNF3. This is
expected since formulas in DFN3 format tend to be very long (see examples in
Sect. 2.2). DNF1 and DNF2 performs similarly in our study. This is expected,
since they are quite similar in lengths and they do not impose a cognitive burden
on the users w.r.t. DNF3 (as also shown in the previous study comparing them
directly [4]). As far as time is concerned, we still observe that Tooth operators
are faster than any of the DNF formats. Remarkably, the response time obtained
using DNF1 is similar to the one obtained when using the Tooth operator. This
can be motivated by observing that DNF1 format can be considered still a concise
representation. Thus, the ‘interformat’ analysis seems to suggest that DNF1 and
Tooth operator have quite similar understandability from the performance point
of view and also from the subjective point of view. On the other hand, DFN2 and
DNF3 require longer time of response and were perceived as less understandable
than Tooth operators.
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5 Conclusion and Future Works

In this paper, we studied the intepretability of threshold operators, by comparing
them with a standard logical formalism, i.e. the DNFs. To model threshold
operators in a logical setting and to facilitate the comparison with DNFs, we
presented the threshold operators as concept constructors on top of ALC, i.e.
the Tooth expressions. Then, we proposed a user study aiming at comparing the
interpretability of Tooth expressions and DNFs.

On the one hand, DNFs are conventionally considered a benchmark in terms
of both expressivity and interpretability of logical languages [12]. On the other
hand, Tooth expressions [25] provide a more concise representation of formu-
las. Furthermore, they are cognitively grounded, since their design is inspired
by Prototype Theory [29]. Thus, they should allow for a representation of con-
cepts that is, arguably, more in line with the way humans think of them. We
hypothesised tooth expressions to be generally more interpretable than DNFs.

In the user study, we compared Tooth expressions with equivalent DNFs of
different complexity and length, by imposing different conditions on the DNFs
used (see Appendix A). We asked users to carry out two distinct tasks, namely
classification and inspection (see Sect. 4), using Tooth expressions and DNFs.
The interpretability of Tooth expressions and DNFs was measured through
human-grounded metrics, namely accuracy in the responses, time of response,
confidence in the responses, and perceived understandability.

In line with our hypothesis, the study revealed that Tooth expressions are
generally faster to use, leading to a lower time of response. This was observed
across all different DNFs formats considered in the study. Moreover, Tooth
expressions were perceived as more understandable than DNFs in the inspection
task (suggesting that they are better suited to tasks that benefit from a more
compact representation of knowledge). The same was not generally observed in
the classification task. Whilst the time of response was much lower for Tooth
expressions than DNFs and the percentage of correct responses was almost the
same for Tooth expressions and DNFs, the confidence in the reply and the per-
ceived understandability were higher in the case of DNF formulas. By distin-
guishing different DNF formats, we observed that longer DNFs (e.g., DNF3)
were perceived as less understandable than Tooth expressions. This result was
also affected by the background of the respondents. Tooth operators, in partic-
ular, resulted in better performances and in a higher level of perceived under-
standability for users who were not familiar with logic.

The results obtained open several directions for future work. Firstly, we plan
a second user study, where both Tooth expressions and DNFs are translated into
natural language. This would allow to further test whether the algorithm of clas-
sification which stands behind the Tooth operator is more interpretable and easy
to use. Secondly, we plan to compare decision trees and Tooth expressions [7].
Decision trees and Tooth expressions seem to have complementary pros and cons
when considered in the context of XAI. Analysing the different performances of
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users in either the representations might provide useful insights on which repre-
sentation format would be more suitable in relation to different contexts, tasks,
and applications.

Acknowledgment. The authors thank Oliver Kutz, Nicolas Troquard, Pietro Gal-
liani, and Antonella De Angeli for taking the pre-test and providing precious feedback
about the user study.

A Examples used in the questionnaires

1. – DNF1: A � B
– DNF2: A � (¬A � B)
– DNF3: (A � B) � (¬A � B) � (A � ¬B)
– Tooth: ∇∇1((A, 1), (B, 1))

2. – DNF1: (¬A � C) � B
– DNF2: (A � B) � (¬A � C) � (¬A � B � ¬C)
– DNF3: (A � B � C) � (¬A � B � C) � (¬A � B � ¬C) � (¬A � ¬B � C) �

(A � B � ¬C)
– Tooth: ∇∇2((¬A, 1), (B, 2), (C, 1)) ≡ ∇∇1((A,−1), (B, 2), (C, 1))

3. – DNF1: (¬A � B) � C
– DNF2: (¬A � B) � (A � ¬B � C) � (A � B � C) � (¬A � ¬B � C)
– DNF3: (¬A � B � C) � (¬A � B � ¬C) � (A � ¬B � C) � (A � B � C) �

(¬A � ¬B � C)
– Tooth: ∇∇2((A,−1), (B, 2), (C, 3))

4. – DNF1: (A � B) � (B � C) � (A � C)
– DNF2: (A � B) � (A � ¬B � C) � (¬A � B � C)
– DNF3: (A � B � C) � (¬A � B � C) � (A � ¬B � C) � (A � B � ¬C)
– Tooth: ∇∇2((A, 1), (B, 1), (C, 1))

5. – DNF1: (A � D) � (A � B � C) � (D � B) � (D � C)
– DNF2: (A � D) � (A � B � C � ¬D) � (¬A � B � D) � (¬A � ¬B � C � D)
– DNF3: (¬A � ¬B � C � D) � (¬A � B � ¬C � D) � (¬A � B � C � D) �

(A � ¬B � ¬C � D) � (A � ¬B � C � D) � (A � B � ¬C � D) � (A � B �
C � ¬D) � (A � B � C � D)

– Tooth: ∇∇5((A, 3), (B, 1), (C, 1), (D, 4))
6. – DNF1: (A � B) � (A � C) � (A � D) � (B � D)

– DNF2: (A � B � ¬D) � (¬A � B � C � D) � (A � ¬B � C � ¬D) � (¬A �
B � ¬C � D) � (A � D)

– DNF3: (¬A � B � ¬C � D) � (¬A � B � C � D) � (A � ¬B � ¬C � D) �
(A � ¬B � C � ¬D) � (A � ¬B � C � D) � (A � B � ¬C � ¬D) � (A � B �
¬C � D) � (A � B � C � ¬D) � (A � B � C � D)

– Tooth: ∇∇3((A, 2), (B, 1.5), (C, 1), (D, 1.5))
7. – DNF 1: (A � B) � (A � C � D) � (B � C � D)

– DNF 2: (A � B) � (¬A � B � C � D) � (A � ¬B � C � D)
– DNF 3: (A � B � C � D) � (A � B � ¬C � ¬D) � (A � B � ¬C � D) � (A �

B � C � ¬D) � (¬A � B � C � D) � (A � ¬B � C � D)
– Tooth: ∇∇4((A, 2), (B, 2), (C, 1), (D, 1))
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